Nonlinear Systems Analysis

Lecture 7

3.1: Existence & Uniqueness

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-2

- 3.1: Existence & Uniqueness
 - Introduction
 - Local Existence and Uniqueness
 - Lipschitz Property & Continuity
 - Global Existence and Uniqueness

Fundamental properties of solutions of ODEs:

existence,
uniqueness,
continuous dependence on initial conditions,
and continuous dependence on parameters.

• Starting an experiment at t_0 , we expect that the system will move and its states will be defined at $t > t_0$.

3.0: Introduction - 2

- With a deterministic system,
 we expect that
 we can repeat the experiment exactly,
 i.e. get same motion and same state
 at t > t₀.
- To obtain this prediction, the initial-value problem $\dot{x}=f(t,x), \quad x(t_0)=x_0$ must have a unique solution.

• The key constraint is

the Lipschitz condition:

by imposing some constraints on f(t,x).

for all (t,x) and (t,y) in some neighborhood of (t_0,x_0) .

3.0: Introduction – 4

- An essential factor
 in the validity of any math model is
 the continuous dependence of its solutions
 on the data of the problem.
- The data are the initial state x_0 , the initial time t_0 , and the f(t,x).
- Arbitrarily small errors in the data will not result in large errors in the solutions.

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-7

• Sensitivity equations

to describe the effect
of small parameter variations
on the performance of the system.

Comparison principle
 to bound the solution
 of a scalar differential inequality

by the solution of

3.1: Existence and Uniqueness - 1

- To study the sufficient conditions for the existence and uniqueness of the solution
 of the initial-value problem (3.1).
- A solution of (3.1) over interval $[t_0, t_1]$ is a continuous function $x:[t_0, t_1] \to R^n$ such that $\dot{x}(t)$ is defined and $\dot{x}=f(t,x(t))$ for all $t\in[t_0,t_1]$.

- If f(t,x) is continuous in t and x, then the solution x(t) will be continuously differentiable.
- If f(t,x) is continuous in x, but only piecewise continuous in t, then a solution x(t) could only be piecewise continuously differentiable.

3.1: Local Existence and Uniqueness - 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-10

- A ball: $B_r(x_0) = \{x \in R^n \mid ||x x_0|| \le r \}$
- Theorem 3.1

(Local Existence and Uniqueness)

Let f(t,x) be piecewise continuous in t and satisfy the Lipschitz condition

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

 $\forall x, y \in B_r(x_0), \quad \forall t \in [t_0, t_1].$

Then, there exists some $\delta>0$ such that $\dot{x}=f(t,x)$ with $x(t_0)=x_0$ has a unique solution over $[t_0,t_0+\delta]$.

- Proof:
- First, x(t) satisfies both the following eqns:

3.1: Local Existence and Uniqueness – 3

- View its RHS as a mapping of the continuous function $x:[t_0,t_1]\to R^n$,
- Denote it by (Tx)(t),
- Write it as x(t) = (Tx)(t)
- Note that (Tx)(t) is continuous in t.
- A solution of it is a fixed point of the mapping T that maps x into Tx.
- Existence of a fixed pint can be established by using the contraction mapping theorem.

- We need to define a Banach space χ and a closed set $S \subset \chi$ such that T maps S into S and is a contraction over S.
- Let $\chi =$ (set of all cont. fun.) with norm $||x||_C =$ and S =
- We restrict the choice of δ to satisfy $\delta \leq t_1 t_0$ so that $[t_0, t_0 + \delta] \subset [t_0, t_1]$.

3.1: Local Existence and Uniqueness - 5

- Notice that ||x(t)|| dentoes a norm on \mathbb{R}^n , while $||x||_C$ denotes a norm on χ .
- Also, B is a ball in \mathbb{R}^n , while S is a ball in χ .
- By definition, T maps χ into χ .

ullet To show that T maps S into S, write

$$(Tx)(t) - x_0$$

3.1: Local Existence and Uniqueness – 7

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-16

ullet By piecewise continuity of f,

we know that $f(t, x_0)$ is bounded on $[t_0, t_1]$.

Let $h = \max_{t \in [t_0, t_1]} ||f(t, x_0)||$.

Using the Lipschitz condition and

the fact that for each $x \in S$,

$$||x(t)-x_0|| \leq r, \quad \forall t \in [t_0,t_0+\delta],$$

we obtain

$$||(Tx)(t)-x_0|| \leq$$

3.1: Local Existence and Uniqueness – 8	Feng-Li Lian © 200 NTUEE-NSA-Ch3A-
2.1. Local Evictoria and Uniqueness 0	Feng-Li Lian © 20
3.1: Local Existence and Uniqueness – 9	NTUEE-NSA-Ch3A-
To show that	
T is a contraction mapping over S :	
• Let $x, y \in S$, consider	
(Tx)(t) - (Ty)(t) =	

• Therefore, for $\delta \leq \frac{\rho}{L}$,

$$||Tx - Ty||_C \le$$

- Choosing $\rho < 1$ and $\delta \leq \rho/L$ ensures that T is a contraction mapping over S.
- ullet By the contraction mapping theorem, if δ is chosen to satisfy

$$\delta \leq$$

then (C.2) will have a unique solution in S.

3.1: Local Existence and Uniqueness - 11

- Our final goal is to establish uniqueness of the solution among all continuous functions x(t), that is, uniqueness in χ .
- It turns out that any solution of (C.2) in χ will lie in S.

• Note that $\text{since } x(t_0) = x_0 \text{ is inside the ball } B, \\ \text{any continuous solution } x(t) \text{ must}$

lie inside B for some interval of time.

• Suppose that x(t) leaves the ball B and let $t_0 + \mu$ be the first time x(t) intersects the boundary of B. Then, $||x(t_0 + \mu) - x_0|| = r.$

3.1: Local Existence and Uniqueness – 11

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-22

ullet On the other hand, for all $t \leq t_0 + \mu$, $||x(t) - x_0|| \leq$

- Hence, the solution x(t) cannot leave the set B within the time interval $[t_0,t_0+\delta]$, which implies that any solution in χ lies in S.
- Consequently,
 uniqueness of the solution in S
 implies uniqueness in χ.
- QED

3.1: Lipschitz in x - 1

- A function is Lipschitz in x
 with a Lipschitz constant: L
- A function f(x) is said to be local Lipschitz on a domain (open and connected set) $D \subset R^n$ if each point of D has a neighborhood D_0 such that f satisfies the Lipschitz condition (3.2) for all points in D_0 with some Lipschitz constant L_0 .

- A local Lipschitz function on a domain D
 is not necessarily Lipschitz on D,
 since the Lipschitz condition may not hold
 uniformly (with the same constant L)
 for all points in D.
- A local Lipschitz function on a domain D
 is Lipschitz on every compact
 (cloesed and bounded) subset of D.
- A function f(x) is said to be globally Lipschitz
 if it is Lipschitz on Rⁿ.

3.1: Lipschitz Property & Continuity - 1

- Lemma 3.1 shows how a Lipschitz constant can be calculated using knowledge of $[\partial f/\partial x]$.
- Lemma 3.1
- Let $f:[a,b] \times D \to R^m$ be continuous for some domain $D \subset R^n$.
- Suppose that $[\partial f/\partial x] \text{ exists and}$ is continuous on $[a,b] \times D.$

• For a convex subset $W \subset D$, if there is a constant $L \geq 0$ such that

on $[a,b] \times W$, then

for all $t \in [a, b], x, y \in W$.

3.1: Lipschitz Property & Continuity – 3

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-28

Lemma 3.2

If f(t,x) and $[\partial f/\partial x](t,x)$ are continuous on $[a,b]\times D$, for some domain $D\subset R^n$, then f is local Lipschitz in x on $[a,b]\times D$.

• Lemma 3.3

If f(t,x) and $[\partial f/\partial x](t,x)$ are continuous on $[a,b]\times R^n$, then f is globally Lipschitz in x on $[a,b]\times R^n$ iff $[\partial f/\partial x]$ is uniformly bounded on $[a,b]\times R^n$.

- If f(x) is Lipschitz on W,
 then it is uniformly continuous on W
 (Exercise 3.20).
 The converse is not true.
- The Lipschitz property is stronger than continuity.
- Lemma 3.2 shows that the Lipschitz property is weaker than continuous differentiability.

3.1: Lipschitz Property & Continuity – 5

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-30

Example

$$f(x) = \begin{bmatrix} \sin 3x_1 + \cos 3x_2 \\ 2\cos x_1 - \sin x_2 \end{bmatrix}$$

• Example 3.1

$$f(x) = \begin{bmatrix} -x_1 + x_1 x_2 \\ x_2 - x_1 x_2 \end{bmatrix}$$

3.1: Lipschitz Property & Continuity – 7

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-32

• Example 3.2

$$f(x) = \begin{bmatrix} x_2 \\ -\operatorname{sat}(x_1 + x_2) \end{bmatrix}$$

• Theorem 3.2

(Global Existence and Uniqueness)

Suppose that

f(t,x) is piecewise continuous in t and satisfies

$$||f(t,x) - f(t,y)|| \le L ||x - y||$$

 $\forall x, y \in R^n, \ \forall t \in [t_0, t_1].$

Then, the state equation $\dot{x} = f(t, x)$,

with $x(t_0) = x_0$,

has a unique solution over $[t_0, t_1]$.

3.1: Global Existence and Uniqueness – 2

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-35

- Local Lipschitz property of a function is basically a smoothness requirement.
 It is implied by continuous differentiability.
 Except for discontinuous nonlinearities, it is reasonable to expect models of physical sysems to have locally Lipschitz RHS functions.
- Global Lipshitz property is restrictive.

3.1: Global Existence and Uniqueness - 4

Feng-Li Lian © 2005 NTUEE-NSA-Ch3A-36

 The following Theorem 3.3 shows that global existence and uniqueness only needs the local Lipschitz property of f at the expense of having to know more about the solution of the system. Theorem 3.3
 (Global Existence and Uniqueness)

- Let f(t,x) be piecewise continuous in t and local Lipschitz in x for all $t \ge t_0$ and all x in a domain $D \subset R^n$.
- Let W be a compact subset of D, $x_0 \in W$, and suppose it is known that every solution of $\dot{x} = f(t,x), \ x(t_0) = x_0$ lies entirely in W.
- Then, there is a unique solution that is defined for all $t \ge t_0$.