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Invariance-like Theorems (8.3)

e For autonomous systems
LaSalle’s invariance theorem shows that

trajectory — E = {V(z)=0}

e For non-autonomous systems

{V(taw)}

e If it can be shown that

V(t,z) < —W(z) <0
E = {W(z) = 0}

trajectory — F as t — oo

Ch8.3-3
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Barbalat’'s Lemma

e Lemma 8.2

e Let ¢: R — R be a unif. cont. func.
on [0, c0).

e Suppose that

lim /Ot o(T)dr

t—o0

exists and is finite.

e Then,

¢(t) — 0 as t — oo

Ch8.3-4
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Barbalat’'s Lemma

e Proof:
e If is not true,

then there is a positive constant k;
such that for every T > 0,
we can find T; > T with |¢(Ty)| > k;.

e Since ¢(t) is unif. cont.,
there is a positive constant ko
such that |¢(t +7) — ¢(t)| < k1/2
for all t > 0 and all 0 < 7 < k».

e Hence,

[o(¢)]

|p(t) — &(T1) + &(T1)]
|p(T1)| — |@(t) — &(T1)|
ky — %kzl

ALY

1
5’61, vVt € [T, Ty + k2]

Ch8.3-5
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Barbalat's Lemma

e Since ¢(t) retains the same sign
for Th <t <Ti+ ko, then

T1+k2
/ b(t)dt

Tr+k2 1
- / B(b)|dt > ik
T 2

Ty

t
e Thus / ¢(7)dT cannot converge to

0
a finite limit as t — oo,
a contradiction.

Ch8.3-6
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Theorem 8.4 Ch8.3-7

e Theorem 8.4

e Let D C R™ be a domain
containing x =0
and suppose f(t,x) is
piecewise cont. in t
and locally Lipschitz in z,
uniformly in ¢, on [0,00) X D.

e Furthermore, Vt > 0,
suppose f(t,0) is unif. bdd.
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Theorem 8.4 Ch8.3-8

elet V:[0,0) Xx D— R be
a cont. diff. func such that

Wi(z) < V(t,x) < Wa(x)

. ov oV

V(t,xz) = E + %f(tax) < —W(x)
Vt > 0,Vx € D,
where Wy (x), Wy(x) are cont. P.D. func.
and W(x) is cont. P.S.D. func. on D.

e Choose r > 0 such that B, C D
and let p < min”m”:r Wl(a:)
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Theorem 8.4 Ch8.3-9
e Then, with z(tg) € {x € B, | Wa(x) < p}

all sol. of & = f(t,x) are bdd

and satisfy

W(x(t)) > 0ast — oo

e Moreover, if all the assumptions hold

globallly and W7 () is radially unbounded,

the statement is true for all z(ty) € R™.
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Theorem 8.4: Part of Proof Ch8.3-10

Part of Proof:
Since V (t,x(t)) is
monotonically nonincreasing

and bounded from below by zero,
it converges as t — oo.

So, for W (x),
¢ t
4 W (a(r))dr < —J/t V(7 a(r))dr

= V{(to,z(to)) — V(t,x(t))

Therefore, lim; o ftto W (z(7))dr
exists and is finite.
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Theorem 8.4: Part of Proof Ch8.3-11
e Since x(t) is bdd., Vt > tg
& = f(t,xz(t)) is bdd., uniformly in ¢.

e Hence, x(t) is unif. cont. int on [ty, c0).

e So, because W (x) is unif. cont. in x
on the compact set By,
consequently,

W (x(t)) is unif. cont. in t on [tg, c0).

e Therefore, by Lemma 8.2,
W(x(t)) — 0 as t — oo.

e The limit W (x(t)) — 0 implies that
x(t) approaches E as t — oo,

where e Therefore, the positive limit set of x(t)
E={xecD|W(x)=0} is a subset of E.
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Theorem 8.5: U.A.S. Ch8.3-12

e Theorem 8.5
e Let D C R™ be a domain containing

=0

and suppose f(t,z) is piecewise cont.
int

and locally Lipschitz in x
forallt > 0 and = € D.

e Let x =0 be an E.P. for & = f(t,x)
at t = 0.
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Theorem 8.5: U.A.S. Ch8.3-13
e lLet V:[0,00) Xx D — R be
a cont. diff. func such that

Wi(z) < V(t, z) < Wa(x)

. ov. oV
V(t,z) = 3¢ T af(tam) <0

V(t+06,¢(t+6t,x)) — V(t,z)< —AV(,z), 0<AL1

vt > 0,Vx € D, for some § > 0,
where

Wi(x), Wa(x) are cont. P.D. func.
on D

and ¢(7;t,x) is the sol. of the system
starts at (¢, x).

e Then, the origin is U.A.S.
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Theorem 8.5: U.A.S. Ch8.3-14

e If all assumptions hod globally and
Wi (x) is radially unbounded,
then the origin is G.U.A.S.

o If

Wi(z) 2 kill=]|%  Wa(z) < kallz]|%

where ki,k2,c > 0,
then the origin is E.S.
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Example 8.11: L.T.V.
e Example 8.11

e Consider the LTV system

z = A(t)z

where A(t) is cont. for all t > 0.

e Suppose that thereis a cont. diff. symm.
P(t) that satisfies

0< eI <P(t)<eol, V¢>0

as well as matrix diff. eq.

—P(t) = P(t)A(t) + AT(t)P(t) + CT(t)C(t)

where C(t) is cont. in t.

Ch8.3-15
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Example 8.11: L.T.V.

e The derivative of the quadratic func.
V(t,z) = 2T P(t)x
along the traj. of the system is

Vv =—zTcT@)c@)z <0

e Let the sol. be ¢(7;t,x) = (7, ¢)x,
where ®(,t) is state transition matrix.

e Therefore,

V(E+0,6(i+85t@) — Vit,z) = | V(r, ¢(r;t,x))dr

t+6
S / &7 (1, 4)CT CB(r, t)dr
t

= —aTW(t,t+ o)z

t+6
where W(t, ¢+ 6) = / &7 (+,4)CT (+)C(+)®(r, t)dr
t

Ch8.3-16
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Example 8.11: L.T.V. Ch8.3-17

e Suppose there is positive a constant
k < ¢9 such that

W(t,t—|—5) > kI, Vt>0
then

k
V(t+67¢(t+53 t7w)) - V(t7 m) < _ka”% < __V(t7m)
Cc2

e Thus, all assumptions of Thm 8.5 are
satisfied globally with

. k
Wi(z) = cil|z||3, i = 1,2, A= o<1

e Then, x =0 is G.E.S.

e Note that
W (t,t 4+ d) is the obvervability Gramian
of (A(t),C(t)) and
W (t,t + &) > kI is implied by
uniform observability of (A(t),C(t)).
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Example 8.12: Adaptive Control Ch8.3-18
e Example 8.12 (from Sec 1.2.6)

e Model reference adaptive control:

reference model: y,, = amym + kmr

e If v > 0 is the adaptation gain,
€o = Yyp — Yym IS the output error,
and ¢1, ¢ are the parameter errors.

e The closed-loop eq.
€o = ameo+ k?pd)ﬂ‘(t) + kp¢2[€o + ym(t)]

fﬁl —veor(t)
b2 = —7veoleo + ym(t)]
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Example 8.12: Adaptive Control Ch8.3-19
e Assume that kp, >0, am <0

e 7(t) is piecewise cont. and bdd.

e Using

as a Lyapunov function candidate,

e We obtain
. am o
V = k_eo + eo(P17 + P2e0 + P2ym) — d1€0T — P2e0(€0 + Ym)
P
am o
= —e2 <0
kp =
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Example 8.12: Adaptive Control Ch8.3-20

e By applying Thm 8.4, we conclude that
for any ¢ > 0 and
for all initial states in {V < ¢},
all state variables are bounded
for all t > tg and lim;_, o en(t) = 0.

e This shows that y, — ym,
but it says nothing about ¢, ¢ — 0!

e In fact, they may not converge to zero.

o If r,y,, are nonzero constant signails,
the closed-loop system will have
an equilibrium subspace

{eo =0, ¢2 = (am/kp)P1}-
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Example 8.12: Adaptive Control

e Hence, we need to apply Thm 8.5
to derive the conditions of ¢, ¢2 — 0.
That is, the conditions which the origin
(eo = 0,001 = 0,02 = 0) is U.A.S.

e Reformulate the system as:
am kpr(t) kpyp(t)
T = —r(t) 0 0 x,
—7yp(t) 0 0

€o
where r=| @1

@2

Ch8.3-21
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Example 8.12: Adaptive Control

e Suppose lim;_,[r(t) — rss(t)] = 0,
Then, lim¢—,oo[ym(t) — yss(t)] = 0,
Together with lim;_. eo(t) =0,
the above linear system can be
represented by

& = [A®t) + B(t)x

where

am kprss(t) kpyss(t)
—’szs(t) 0 0

and limy ., B(t) =0

e Because lim;_ ., B(t) =0,
if @ = A(t)z is U.A.S.,
then & = [A(t) + B(t)]x is U.A.S..

Ch8.3-22
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Example 8.12: Adaptive Control

e Using V as a Lypunov function
candidate, we obtain

. a
Vv = 2e2=_zTcTCx,

where C = \/_am[l 0 0]
kp

e From Example 8.11,
if (A(t),C) is uniformly observable,
then the origin will be U.A.S.

e And, uniform observability of (A(t),C)
implies uniform observability of
(A(t) — K(t)C,C)
for any piecewise cont., bdd K (t).

Ch8.3-23
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Example 8.12: Adaptive Control
e Take

K(t) = ||~ fam = yras(t) — 1tus(®)

and obtain

0 k’p'f’ss(t) kpyss(t)

AR)—K@®)C=|0 o0 0
0 0 0
_ —am
C=,/7m=[ 0 0

e Hence, by investigating observability
of this pair for a given reference signal,
we can determine whether
the conditions of Thm 8.5 are satisfied.

Ch8.3-24
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Example 8.12: Adaptive Control

e For example,
if » is @ nonzero constant signal,
it can be easily seen that
the pair is not observable.

e On the other hand,
if 7(t) = asinwt with positive a, w,
we have
rss(t) = r(t) and yss = aM sin(wt + §),
where M, are determined
by the transfer func. of the ref. model.

Ch8.3-25
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Example 8.12: Adaptive Control

e It can be verified that
the pair is uniformly observable;
hence, the origin (e, = 0, ¢1 = 0, p2 = 0)
is U.A.S. and
the parameter errors ¢q(t), ¢2(t) — 0

as t — oo.

e Note that r»(t) = asinwt is said to be
persistently exciting,
while a constant reference is
not persistently exciting.

Ch8.3-26
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Observability of Time-Varying Systems

e Consider zero-input LTV system

(t) = A)z(t), =(to) ==o

y(t) = C(t)z(t)
and let qji(t,tg,a:’f)) the associated sol.
or,

¢1 (t’ to, m(1))

a:(t) — c Rnxl

|_ on(l, o, 5133) J

e Note that

@ () or [¢;(t, to, xh)] = (t, o) (to)
where ®(t,1) is
the state transition matrix
from tg to t.

Ch8.3-27
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Observability of Time-Varying Systems
o Let

y'(t) = C(£)i(t, to, z)
So, over [tg, t1]

the pair (C(t), A(t)) is observable
iff y*(-) are linear indep. vector func.

e Note that y(t) = C(t)®(t, to)x(to)

e That is,
the columns of C(t)®(t,tg) are
linear indep.

Ch8.3-28
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Observability of Time-Varying Systems
e That is, there are distint points t4,...,1p
such that

C(t1)®(t1,t0)
C(tz)‘l’_(tz, to)

C (1) ® (tp: to)

rank =n

e For LTI systems, because

®(t;,t0) = exp(A(t; — to))

A2
= I+ A(t; — to) + (i — to)? + ...
the Obervability Matrix becomes

C
CA

can-1

Ch8.3-29
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