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Input-to-State Stability, ISS (4.9)
e Consider the system

= f(t,x,u) (4.44)

where f:[0,00) X R X R™ — R" is

piecewise continuous in t and

locally Lipschitz in  and .

e The input u(t) is a piecewise continu-
ous, bdd function of ¢t for all t > 0.

e Suppose the unforced system

@& = f(t,z,0) (4.45)

has a G.U.A.S. E.P. at £ = 0.

e What can we say about
the behavior of the system (4.44)

in the presence of a bounded input w(t)?

Ch4.9-3
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Input-to-State Stability, ISS
e For the L.T.I. system

= Ax + Bu

with a Hurwitz matrix A,

we can write the solution as

t
z(t) = et Az (1)) +/ et ABy(r)dr
to

e And use the bound ||e(t—t0)A4|| < ge—A(t—t0)

to estimate the solution by

[ ()]

<

t
ke M0 fa(to)]| + [ ke A B| |ju(r)]dr
to

k|| B
ke—A<t—t°>||m(to>||+—” 1 sup |[u(r)]|
A <7<

Ch4.9-4
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Input-to-State Stability, ISS

This estimate shows that

the zero-input response

decays to zero exponentially fast,

while the zero-state response is bounded

for every bounded input.

In fact, the estimate shows more than
a bounded-input-bounded-state (BIBO)

property.

It shows that
the bound on the zero-state response
is proportional to

the bound on the input.

Ch4.9-5

E

Feng-Li Lian 2004 Nonlinear Systems Analysis

For General Nonlinear Systems

For a general nonlinear system,

it should not be surprising that

these properties may not hold even when

the origin of the unforced syst. is G.U.A.S.
e.g., consider the scalar system

&x=-3x+ (1+ 2w2)u

which has a G.E.S. origin when u = 0.

Yet, when z(0) = 2 and u(t) = 1,

(3—e")
(3—2et)

the solution z(t) =
is unbounded;

it even has a finite escape time.

Ch4.9-6
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For General Nonlinear Systems

e L et us view the system
& = f(t,x,u) as
a perturbation of the unforced syst

& = f(t,x,0).

e Supose we have a Lyapunov func V (¢, x)
for the unforced system and
let us calculate the derivative of V

in the presence of u.

e Due to the boundedness of u,
it is plausible that in some cases
it should be possible to show that
V is negative outside a ball of radius 1,

where p depends on sup ||ul|.

Ch4.9-7
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For General Nonlinear Systems
e This would be expected, for example,
when the functon f(t,x,u) satisfies

the Lipschitz condition

£ (t, 2, u) — f(t,2,0)|] < Li[ull, (4.46)

e Showing that V is negative
outside a ball of radius u
would enable us to apply Thm 4.18
to show that x=(t) satisfies (4.42), (4.43).

()] < B(llx(to)ll,t — to), Vio<t<to+T

lz(®)]] < oy H(az(w), V&>t +T

(4.42)

(4.43)

Ch4.9-8
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For General Nonlinear Systems

e These inequalities show that
||z(t)|| is bdd by a class KL function
B(||x(to)||,t — to) over [tg,to + T] and
by a class K function al_l(az(u))

fort>tg+T.

e Consequently,

z(t)]] < B(llz ()], t — to) + ai ' (az(k))

is valid for all t > tg.

Ch4.9-9
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Definition of ISS

e Definition 4.7:

e The system & = f(t,x,u) is said to be
input-to-state stable
if there exist a class KL function 3
and a class K function ~
such that for any initial state x(tg)
and any bdd input u(t),
the sol. x(t) exists for all ¢t > ty and

satisfies

[z < B([|=(to)||, t—to)+~( sup_|[|u(7)]]),

tp<7t<

e Inequality (4.47) guarantees that
for any bdd input u(t),
the state x(t) will be bounded.

(4.47)

Ch4.9-10
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Definition of ISS Ch4.9-11
e Furthermore, as ¢t increases,

the state x(t) will be ultimately bounded

by a class K function of sup;>q, ||u(t)][.

e Ex 4.58 uses inequality (4.47) to show
that
if u(t) converges to zero as t — oo,

so does x(t).

e Since, with u(t) =0,
(4.47) reduces to

llz(t)|| < B(||z(to)ll,t — to)
input-to-state stability implies that &= f(t,x,u) (4.44)
the origin of the unforced system (4.45
g Y (4.45) & = f(t,2,0) (4.45)
is G.U.A.S.
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Definition of ISS Ch4.9-12
e The notion of input-to-state stability

is defined for the global case

where the initial state and the input

can be arbitrarily large.

e A local version of this notion

is presented in Ex 4.60.
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Theorem 4.19
e Theorem 4.19:

e Let V:[0,0) X R" — R
be a cont. diff. func. such that

V(t,xz,u) € [0,00) Xx R™ x R™

ar([lz]]) < V(t,z) < az([|z|]) (4.48)

ov oV
ot

where a4, a9 are class Koo functions,
p is a class K function, and

W3(x) is a cont. P.D. func. on R".

e Then, the system (4.44) is ISS

withfy:al_loazop.

2 T ol baw) < —Ws(x), V2|l 2 p(|lull) >0, (4.49)

Ch4.9-13
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Theorem 4.19

e Proof:

e By applying the global version of Thm
4.18
we find that

the sol. x(t) exists and satisfies, Vit > i,

[z (@) < B(||=(to)[]; t—to)+v(sup [[u(7)]]), (4.50)

T>tg

e Since x(t) depends only on u(T)
for tg <1<t
the supremum on the RHS of (4.50)
can be taken over [tg,t],

which yields (4.47).

Ch4.9-14
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Lemma 4.6: Converse Theorem for G.E.S.

Ch4.9-15
e Lemma 4.6:
e Suppose f(t,xz,u) is cont. diff. and
globally Lipshitz in (x,u),
uniformly in t.
e If the unforced syst (4.45), i.e., u =0 = f(t,z,u) (4.44)
has a GES EP at the origin = 0, .
= f(t,x,0) (4.45)
then the system (4.44) is ISS.
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Lemma 4.6: Converse Thm for G.E.S. Ch4.9-16

e Proof:
e View (4.44) as a perturbation

of the unforced system (4.45).

e (The converse Lyapunov)
Thm 4.14 shows that
the unforced system (4.45) has
a Lyapunov function V (t,x)

that satisfies (4.10)-(4.12) globally.

e Due to the uniform global Lipschitz
property of f,
the perturbation term satisfies (4.46)

for all t > tg and all (x,u).

&= f(t,x,u) (4.44)

= f(t,x,0) (4.45)

c1l|z||? < V(t,z) < ea||z||?

aVv oV
ot
Ha—VH < cqlla
ox || —

||f(t,:v,u) - f(t,:r:,O)H < L||u||7

— +—f(t,2,0) < —cg||z||?
ox

(4.46)
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Lemma 4.6: Converse Thm for G.E.S. Ch4.9-17

e The derivative of V

with respect to (4.44) satisfies &= f(t,xz,u) (4.44)
1% v '
vV = ot + %f(tama 0) + %[f(tamau) — f(t,z,0)] = f(t,x,0) (4.45)
< —egllzl|* + ca||o|| L [|ul|
cillz||? < V(t, ) < eal|a]]?
ov oV
e To use the term —c3||z]||? 5+ 6—f(t’w’0) < —eg|z||?
€Xr
to dominate c4 L ||z|| ||u||, for large ||x|], oV
we rewrite the foregoing inequality as Ha” < cqllz||

V < —e3 (1-0) ||2|[*~ ¢3 0 [|@]|*+ ca L ||2|| ||ul|

where 0 < 6 < 1.

e Then,

: ca L ||ull
V< —e3 1=0) 2|l Vil 2 ==, V(taw)

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Lemma 4.6: Converse Thm for G.E.S. Ch4.9-18

e Hence, the conditions of Thm 4.19
are satisfied with
aq(r) = c1r?,
as(r) = cor?, and
p(r) = (caLl/c30)r,
and

we conclude that the system is ISS

with v(r) = \/ea/c1(eqL/c30)r.

e QED
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Discussion of Lemma 4.6

e Lemma 4.6 requires
a globally Lipschitz function f and
G.E.S. of x = 0 of the unforced system

to conclude input-to-state stability.

e It is easy to construct examples
where the lemma does not hold

in absence of one of these 2 conditions.

e The system & = —3z + (1 + 22)u,
which we discussed earlier in the Sec,

doesn’t satisfy the global Lipschitz cond.

Ch4.9-19
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Discussion of Lemma 4.6

 The system & = — % +u =def f(x,u)

has a globally Lipschitz f
since the partial derivatives of f
w.r.t. & u are globally bounded.

- - . — m -
e The origin of & = a2 is G.A.S.,

as it can be seen by the Lyapunov func-

tion V(z) = x2/2,
2

whose derivative V(z) = —

is N.D. for all zx.

e It is locally E.S.
because the linearization at the origin

is ¢ = —x.

Ch4.9-20
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Discussion of Lemma 4.6

Ch4.9-21
e However, it is not G.E.S.
e It is easiest seen through the fact that
the system is not 1.S.S..
e Notice that with u(¢t) =1, f(x,u) > 1/2.
e Hence, x(t) > x(tg) +t/2 for all t > 0,
which shows that the sol. is unbounded.
e In the absence of
G.E.S. or globally Lipschitz functions,
we may still be able to show ISS
by applying Thm 4.19.
e This process is illustrated
by the three examples that follow.
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Example 4.25 Ch4.9-22

e Example 4.25:
e The system & = —x2 + u

has a GAS origin when u = 0.

e Taking V = 3x2,
the V along the traj. of the syst
is given by
V = —w4—|—mu

= —(1—0)z* — 02* + 2u

|u| 1/3
Vx| > <7> where 0 < 0 <1
< —(1-0)z*

e Thus, the syst is input-to-state stable

with ~(r) = (r/0)1/3.
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Example 4.26 Ch4.9-23
e Example 4.26:

e The system
&= f(z,u) = —x — 223 + (1 + 2?)u?

has a GES origin when u = 0,
but Lemma 4.6 does not apply

since f is not globally Lipschitz.

e Taking V = 122, we obtain
V = —a? -2z + (1 + 2?)u?
V|z| > u?

S —’134,

e Thus, the syst is input-to-state stable

with ~(r) = r2.
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Examples 4.25 & 4.26 Ch4.9-24
e Note that, in examples 4.25 & 4.26,

V(x) = 22/2 satisfies

(4.48) of Thm 4.19

with aq(r) = as(r) = r2/2.

e Hence, ozl_l(ag(r)) =r

and ~(r) reduces to p(r).

ar([lz]]) < V(t,z) < ax([|=]]) (4.48)

ov oV
it e e w) S —Ws(@), Vel = p(llull) >0, (4.49)
r
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Cascade System Ch4.9-25
e Applications of I.S.S. to
stability analysis of cascade systems
e Consider
1 = fi(t,x1,22) (4.51)
&2 = fa(t,x2) (4.52)
where
f1:[0,00) X R™ x R — R™ and
f2:[0,00) X R™"2 — R™2
are piecewise cont. in t
and locally Lipschitz in z = {il 1
2
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Cascade System Ch4.9-26

e Suppose both
1 = f1(t,x1,0)
T2 = fa(t,x2)

have G.U.A.S. E.P.

at their respective origins.

e Under what condition

n =10

of the cascade system

will the origin =

posses the same property?
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Lemma 4.7: GUAS of Cascade System
e Lemma 4.7:
e Under the stated assumptions,

and with xo as input

if €1 = f1(t,x1,x2) is ISS

and zo = 0 of @y = fa(t,xz2) iIs GUAS,

then z = 0 of the cascade system:

&1 = fi(t,x1,22) (4.51)
&2 = fa(t,z2) (4.52)

is GUAS.

Ch4.9-27
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Lemma 4.7: GUAS of Cascade System
* Proof: &1 = f1(t, 21, 72)

e Let ty > 0 be the initial time. .
o = fa(t,x2)

e The sol. of (4.51) & (4.52) satisfy

llz1(@®)[] < B1 <|Iw1(8)llat—s)+71< sup ||932(7')||> (4.53)

s<t<t

lex(Oll < Ba (sz(s)u,t - ) (4.54)

globally, where t > s > t,
31, B2 are class KL functions

and ~; is a class K function.

Ch4.9-28

(4.51)
(4.52)
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Lemma 4.7: GUAS of Cascade System Ch4.9-29

e Apply (4.53) with s = (t 4+ tg)/2

t+ 1o t—1p
llz1 ()|l < B ( xq ( 5 ) S ) +y1 | sup ||aza(7)]] (4.55)
Sp0<r<t
e To estimate wl(@),
apply (4.53) with s =ty and
t replaced by % to obtain
t+ tg t—1p
o (50| < (e @l S50+ | sue fleaoll] (a56)
to<r <0
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Lemma 4.7: GUAS of Cascade System Ch4.9-30
e Using (4.54), we obtain
sup  ||lz2(7)[| < B2(||z2(t0)]],0) (4.57)
to<T<HHe
t— 1o
sup  |[|z2(7)|| < Ba(||w2(to)l ) (4.58)

o cr oy 2
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Lemma 4.7: GUAS of Cascade System Ch4.9-31
e Substituting (4.56) through (4.58)

into (4.55) and using the inequalities
lz1(to) || < [lz(to)ll,
ea(to)]] < Il (to)]] o= |2
[z < [l (@)[] + [[z2(2)]]
yield

|uwHSﬁQmumuw¢Q

where

\ s/ N, 7 N\, 7/

B (7“, S) =1 ( B1 (T, 8/2) +7 (52("“, 0)), s/2 )+’Y1 (ﬁ2 (T, S/2>)+ﬁ2 (T, S>

e SO, B is a class KL func for all » > 0.

Hence, x = 0 is GUAS
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