#### Nonlinear Systems Analysis

# **Lecture Note**

Section 4.9
Input-to-State Stability
(Lyapunov Stability)

Feng-Li Lian NTU-EE Sep04 – Jan05

Outline Ch4.9-2

- Introduction (L8)
- Autonomous Systems (4.1, L8, L9)
  - Basic Stability Definitions
  - Lyapunov's stability theorems
- The Invariance Principle (4.2, L9+L10)
  - LaSalle's theorem
- Linear Systems and Linearization (4.3, L10)
- Comparison Functions (4.4, L11)
- Non-autonomous Systems (4.5, L11)
- Linear Time-Varying Systems & Linearization (4.6, L11+0.5)
- Converse Theorems (4.7, L12)
- Boundedness & Ultimate Boundedness (4.8, L12)
- Input-to-State Stability (4.9, L13)

#### Input-to-State Stability, ISS (4.9)

Ch4.9-3

Consider the system

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

where  $f:[0,\infty)\times R^n\times R^m\to R^n$  is piecewise continuous in t and locally Lipschitz in x and u.

- The input u(t) is a piecewise continuous, bdd function of t for all  $t \ge 0$ .
- Suppose the unforced system

$$\dot{x} = f(t, x, 0)$$
 (4.45)

has a G.U.A.S. E.P. at x = 0.

What can we say about
 the behavior of the system (4.44)
 in the presence of a bounded input u(t)?

© Feng-Li Lian 2004

Nonlinear Systems Analysis

### Input-to-State Stability, ISS

Ch4.9-4

• For the L.T.I. system

$$\dot{x} = Ax + Bu$$

with a Hurwitz matrix A,

we can write the solution as

$$x(t) = e^{(t-t_0)A}x(t_0) + \int_{t_0}^t e^{(t- au)A}Bu( au)d au$$

ullet And use the bound  $||e^{(t-t_0)A}|| \leq ke^{-\lambda(t-t_0)}$  to estimate the solution by

$$||x(t)|| \le ke^{-\lambda(t-t_0)}||x(t_0)|| + \int_{t_0}^t ke^{-\lambda(t-\tau)}||B|| ||u(\tau)||d\tau$$

$$| \leq |ke^{-\lambda(t-t_0)}||x(t_0)|| + rac{k||B||}{\lambda} \sup_{t_0 \leq au \leq t} ||u( au)||$$

© Feng-Li Lian 2004

#### Input-to-State Stability, ISS

Ch4.9-5

This estimate shows that

the zero-input response

decays to zero exponentially fast,

while the zero-state response is bounded

for every bounded input.

- In fact, the estimate shows more than a bounded-input-bounded-state (BIBO) property.
- It shows that
   the bound on the zero-state response
   is proportional to
   the bound on the input.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### For General Nonlinear Systems

Ch4.9-6

- For a general nonlinear system,
   it should not be surprising that
   these properties may not hold even when
   the origin of the unforced syst. is G.U.A.S.
- e.g., consider the scalar system

$$\dot{x} = -3x + (1 + 2x^2)u$$

which has a G.E.S. origin when u=0.

ullet Yet, when x(0)=2 and  $u(t)\equiv 1$ , the solution  $x(t)=rac{(3-e^t)}{(3-2e^t)}$ 

is unbounded;

it even has a finite escape time.

• Let us view the system

```
\dot{x}=f(t,x,	extbf{u}) as a perturbation of the unforced syst \dot{x}=f(t,x,	extbf{0}).
```

- Supose we have a Lyapunov func V(t,x) for the unforced system and let us calculate the derivative of V in the presence of u.
- Due to the boundedness of u, it is plausible that in some cases it should be possible to show that  $\dot{V}$  is negative outside a ball of radius  $\mu$ , where  $\mu$  depends on  $\sup ||u||$ .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### For General Nonlinear Systems

Ch4.9-8

This would be expected, for example, when the function f(t,x,u) satisfies the Lipschitz condition

$$||f(t,x,u) - f(t,x,0)|| \le L||u||,$$
 (4.46)

• Showing that  $\dot{V}$  is negative outside a ball of radius  $\mu$  would enable us to apply Thm 4.18 to show that x(t) satisfies (4.42), (4.43).

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t_0 \le t \le t_0 + T$$
 (4.42)

$$||x(t)|| \le \alpha_1^{-1}(\alpha_2(\mu)), \quad \forall t \ge t_0 + T$$
 (4.43)

© Feng-Li Lian 2004

#### For General Nonlinear Systems

Ch4.9-9

• These inequalities show that

```
||x(t)|| is bdd by a class \mathcal{KL} function \beta(||x(t_0)||,t-t_0) over [t_0,t_0+T] and by a class \mathcal{K} function \alpha_1^{-1}(\alpha_2(\mu)) for t\geq t_0+T.
```

Consequently,

$$||x(t)|| \le eta(||x(t_0)||, t-t_0) + lpha_1^{-1}(lpha_2(\mu))$$

is valid for all  $t \geq t_0$ .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### **Definition of ISS**

Ch4.9-10

- Definition 4.7:
- The system  $\dot{x} = f(t, x, u)$  is said to be

input-to-state stable

if there exist a class KL function  $\beta$ 

and a class K function  $\gamma$ 

such that for any initial state  $x(t_0)$ 

and any bdd input u(t),

the sol. x(t) exists for all  $t \geq t_0$  and

satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t-t_0) + \gamma(\sup_{t_0 \le \tau \le t} ||u(\tau)||), \quad (4.47)$$

Inequality (4.47) guarantees that

for any bdd input u(t),

the state x(t) will be bounded.

```
Definition of ISS
                                                                                    Ch4.9-11
• Furthermore, as t increases,
  the state x(t) will be ultimately bounded
  by a class \mathcal K function of \sup_{t\geq t_0}||u(t)||.
• Ex 4.58 uses inequality (4.47) to show
  that
  if u(t) converges to zero as t \to \infty,
  so does x(t).
• Since, with u(t) \equiv 0,
  (4.47) reduces to
          ||x(t)|| \le \beta(||x(t_0)||, t-t_0)
                                                      \dot{x} = f(t, x, \mathbf{u}) \quad (4.44)
  input-to-state stability implies that
  the origin of the unforced system (4.45)
                                                         \dot{x} = f(t, x, 0) (4.45)
```

Definition of ISS Ch4.9-12

Nonlinear Systems Analysis

 The notion of input-to-state stability is defined for the global case where the initial state and the input can be arbitrarily large.

 A local version of this notion is presented in Ex 4.60.

is G.U.A.S.
© Feng-Li Lian 2004

© Feng-Li Lian 2004

Theorem 4.19 Ch4.9-13

- Theorem 4.19:
- Let  $V:[0,\infty) imes R^n o R$

be a cont. diff. func. such that

 $\forall (t,x,u) \in [0,\infty) \times R^n \times R^m$ 

 $\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$  (4.48)

$$rac{\partial oldsymbol{V}}{\partial t} + rac{\partial oldsymbol{V}}{\partial x} f(t,x,u) \leq -W_3(x), \quad orall ||x|| \geq 
ho(||u||) > 0, \quad ext{(4.49)}$$

where  $\alpha_1, \alpha_2$  are class  $\mathcal{K}_{\infty}$  functions,

 $\rho$  is a class K function, and

 $W_3(x)$  is a cont. P.D. func. on  $\mathbb{R}^n$ .

• Then, the system (4.44) is ISS with  $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$ .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Theorem 4.19 Ch4.9-14

- Proof:
- By applying the global version of Thm
  - 4.18

we find that

the sol. x(t) exists and satisfies,  $\forall t \geq t_0$ ,

$$||x(t)|| \le \beta(||x(t_0)||, t-t_0) + \gamma(\sup_{\tau > t_0} ||u(\tau)||),$$
 (4.50)

• Since x(t) depends only on  $u(\tau)$ 

for  $t_0 \leq \tau \leq t$ ,

the supremum on the RHS of (4.50)

can be taken over  $[t_0, t]$ ,

which yields (4.47).

#### Lemma 4.6: Converse Theorem for G.E.S.

Ch4.9-15

- Lemma 4.6:
- Suppose f(t,x,u) is cont. diff. and globally Lipshitz in (x, u), uniformly in t.
- ullet If the unforced syst (4.45), i.e.,  $u\equiv 0$   $\dot{x}=f(t,x,u)$  (4.44) has a GES EP at the origin x = 0, then the system (4.44) is ISS.

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

$$\dot{x} = f(t, x, 0)$$
 (4.45)

© Feng-Li Lian 2004

Nonlinear Systems Analysis

### Lemma 4.6: Converse Thm for G.E.S.

Ch4.9-16

- Proof:
- View (4.44) as a perturbation of the unforced system (4.45).
- (The converse Lyapunov) Thm 4.14 shows that the unforced system (4.45) has a Lyapunov function V(t,x)that satisfies (4.10)-(4.12) globally.
- Due to the uniform global Lipschitz property of f, the perturbation term satisfies (4.46) for all  $t \geq t_0$  and all (x, u).

$$egin{split} c_1 ||x||^2 &\leq V(t,x) \leq c_2 ||x||^2 \ &rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x,\mathbf{0}) \leq -c_3 ||x||^2 \ &\left|\left|rac{\partial V}{\partial x}
ight|\right| \leq c_4 ||x|| \end{split}$$

 $\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$ 

 $\dot{x} = f(t, x, 0)$  (4.45)

$$||f(t,x,u)-f(t,x,0)|| \leq L||u||, \quad (4.46)$$

• The derivative of V

with respect to (4.44) satisfies

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x, 0) + \frac{\partial V}{\partial x} [f(t, x, u) - f(t, x, 0)] \qquad \dot{x} = f(t, x, 0) \quad (4.45)$$

$$< -c_3 ||x||^2 + c_4 ||x|| L ||u||$$

$$|c_1||x||^2 < V(t,x) < |c_2||x||^2$$

• To use the term  $-c_3||x||^2$ to dominate  $c_4 L ||x|| ||u||$ , for large ||x||, we rewrite the foregoing inequality as

$$egin{aligned} rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x, extbf{0}) & \leq -c_3 ||x||^2 \ & \left| \left| rac{\partial V}{\partial x} 
ight| \right| \leq c_4 ||x|| \end{aligned}$$

$$\dot{V} \le -c_3 (1-\theta) ||x||^2 - c_3 \theta ||x||^2 + c_4 L ||x|| ||u||$$

where  $0 < \theta < 1$ .

• Then,

$$\dot{V} \leq -c_3 \; (1- heta) \; ||x||^2, \hspace{0.5cm} orall ||x|| \geq rac{c_4 \; L \; ||u||}{c_3 \; heta}, \hspace{0.5cm} orall (t,x,u)$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### Lemma 4.6: Converse Thm for G.E.S.

Ch4.9-18

 Hence, the conditions of Thm 4.19 are satisfied with

$$lpha_1(r)=c_1r^2$$
 ,

$$lpha_2(r)=c_2r^2$$
, and

$$ho(r)=(c_4L/c_3 heta)r$$
 ,

and

we conclude that the system is ISS

with 
$$\gamma(r) = \sqrt{c_2/c_1}(c_4L/c_3\theta)r$$
.

QED

#### Discussion of Lemma 4.6

Ch4.9-19

Lemma 4.6 requires
 a globally Lipschitz function f and
 G.E.S. of x = 0 of the unforced system

to conclude input-to-state stability.

- It is easy to construct examples where the lemma does not hold in absence of one of these 2 conditions.
- The system  $\dot{x}=-3x+(1+x^2)u$ , which we discussed earlier in the Sec, doesn't satisfy the global Lipschitz cond.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### Discussion of Lemma 4.6

Ch4.9-20

- The system  $\dot{x}=-\frac{x}{1+x^2}+u=^{def}f(x,u)$  has a globally Lipschitz f since the partial derivatives of f w.r.t. x & u are globally bounded.
- ullet The origin of  $\dot{x}=-rac{x}{1+x^2}$  is G.A.S., as it can be seen by the Lyapunov function  $V(x)=x^2/2$ , whose derivative  $\dot{V}(x)=-rac{x^2}{1+x^2}$  is N.D. for all x.
- It is locally E.S. because the linearization at the origin is  $\dot{x}=-x$ .

• However, it is not G.E.S.

- It is easiest seen through the fact that the system is not I.S.S..
- Notice that with  $u(t) \equiv 1, \ f(x,u) \geq 1/2$ .
- Hence,  $x(t) \ge x(t_0) + t/2$  for all  $t \ge 0$ , which shows that the sol. is unbounded.
- In the absence of G.E.S. or globally Lipschitz functions, we may still be able to show ISS by applying Thm 4.19.
- This process is illustrated by the three examples that follow.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

#### Example 4.25

Ch4.9-22

- Example 4.25:
- ullet The system  $\dot{x}=-x^3+u$ has a GAS origin when u = 0.
- Taking  $V = \frac{1}{2}x^2$ , the  $\dot{V}$  along the traj. of the syst is given by

$$\begin{array}{ll} \dot{V} &=& -x^4 + xu \\ &=& -(1-\theta)x^4 - \theta x^4 + xu \\ &\forall |x| \geq \left(\frac{|u|}{\theta}\right)^{1/3} \quad \text{where } 0 < \theta < 1 \\ &\leq& -(1-\theta)x^4 \end{array}$$

• Thus, the syst is input-to-state stable with  $\gamma(r) = (r/\theta)^{1/3}$ .

- Example 4.26:
- The system

$$\dot{x} = f(x, u) = -x - 2x^3 + (1 + x^2)u^2$$

has a GES origin when u = 0,

but Lemma 4.6 does not apply

since f is not globally Lipschitz.

• Taking  $V = \frac{1}{2}x^2$ , we obtain

$$egin{array}{ll} \dot{V} &=& -x^2 - 2x^4 + x(1+x^2)u^2 \\ && orall |x| \geq u^2 \\ &\leq & -x^4, \end{array}$$

Thus, the syst is input-to-state stable

with  $\gamma(r) = r^2$ .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

# Examples 4.25 & 4.26

Ch4.9-24

- Note that, in examples 4.25 & 4.26,
  - $V(x) = x^2/2$  satisfies

(4.48) of Thm 4.19

with  $lpha_1(r)=lpha_2(r)=r^2/2$ .

ullet Hence,  $lpha_1^{-1}(lpha_2(r))=r$  and  $\gamma(r)$  reduces to ho(r).

$$\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$$
 (4.48)

$$\frac{\partial \mathbf{V}}{\partial t} + \frac{\partial \mathbf{V}}{\partial x} f(t, x, u) \le -W_3(x), \quad \forall ||x|| \ge \rho(||u||) > 0, \quad (4.49)$$

© Feng-Li Lian 2004

- Applications of I.S.S. to stability analysis of cascade systems
- Consider

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

$$\dot{x}_2 = f_2(t, x_2) \tag{4.52}$$

where

$$f_1:[0,\infty) imes R^{n_1} imes R^{n_2} o R^{n_1}$$
 and

$$f_2:[0,\infty) imes R^{n_2} o R^{n_2}$$

are piecewise cont. in t

and locally Lipschitz in 
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

## Cascade System

Ch4.9-26

Suppose both

$$\dot{x}_1 = f_1(t, x_1, \mathbf{0})$$

$$\dot{x}_2 = f_2(t, x_2)$$

have G.U.A.S. E.P.

at their respective origins.

Under what condition

will the origin 
$$x=\left[egin{array}{c} x_1 \\ x_2 \end{array}\right]=\left[egin{array}{c} 0 \\ 0 \end{array}\right]$$

of the cascade system

posses the same property?

- Lemma 4.7:
- Under the stated assumptions,

and with  $x_2$  as input

if  $\dot{x}_1=f_1(t,x_1,x_2)$  is ISS

and  $x_2=0$  of  $\dot{x}_2=f_2(t,x_2)$  is GUAS,

then x = 0 of the cascade system:

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

$$\dot{x}_2 = f_2(t, x_2)$$
 (4.52)

is GUAS.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

### Lemma 4.7: GUAS of Cascade System

Ch4.9-28

• Proof:

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

• Let  $t_0 \ge 0$  be the initial time.

$$\dot{x}_2 = f_2(t, x_2) \tag{4.52}$$

• The sol. of (4.51) & (4.52) satisfy

$$||x_1(t)|| \le \beta_1 \left( ||x_1(s)||, t-s \right) + \gamma_1 \left( \sup_{s < \tau < t} ||x_2(\tau)|| \right)$$
 (4.53)

$$||x_2(t)|| \leq \beta_2 \left(||x_2(s)||, t-s\right)$$
 (4.54)

globally, where  $t \ge s \ge t_0$ ,

 $\beta_1$ ,  $\beta_2$  are class  $\mathcal{KL}$  functions

and  $\gamma_1$  is a class  $\mathcal{K}$  function.

• Apply (4.53) with  $s = (t + t_0)/2$ 

$$||x_1(t)|| \le \beta_1 \left( \left| \left| x_1 \left( \frac{t+t_0}{2} \right) \right| \right|, \frac{t-t_0}{2} \right) + \gamma_1 \left( \sup_{\frac{t+t_0}{2} \le \tau \le t} ||x_2(\tau)|| \right)$$
 (4.55)

ullet To estimate  $x_1(rac{t+t_0}{2})$ , apply (4.53) with  $s=t_0$  and t replaced by  $rac{t+t_0}{2}$  to obtain

$$\left|\left|x_1\left(\frac{t+t_0}{2}\right)\right|\right| \leq \beta_1\left(\left|\left|x_1\left(t_0\right)\right|\right|, \frac{t-t_0}{2}\right) + \gamma_1\left(\sup_{t_0 \leq \tau \leq \frac{t+t_0}{2}}\left|\left|x_2(\tau)\right|\right|\right) \tag{4.56}$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

## Lemma 4.7: GUAS of Cascade System

Ch4.9-30

• Using (4.54), we obtain

$$\sup_{t_0 \le \tau \le \frac{t+t_0}{2}} ||x_2(\tau)|| \le \beta_2(||x_2(t_0)||, 0)$$
(4.57)

$$\sup_{\substack{t+t_0 \\ 2} \le \tau \le t} ||x_2(\tau)|| \le \beta_2(||x_2(t_0)||, \frac{t-t_0}{2})$$
 (4.58)

© Feng-Li Lian 2004

• Substituting (4.56) through (4.58)

into (4.55) and using the inequalities

$$||x_1(t_0)|| \le ||x(t_0)||,$$

$$||x_2(t_0)|| \leq ||x(t_0)||,$$

$$oldsymbol{x} = \left[egin{array}{c} oldsymbol{x_1} \ oldsymbol{x_2} \end{array}
ight]$$

$$||x(t)|| \le ||x_1(t)|| + ||x_2(t)||$$

yield

$$||x(t)|| \leq eta \left(||x(t_0)||, t-t_0
ight)$$

where

$$\beta\left(r,s\right) = \beta_{1}\left(\frac{\beta_{1}\left(r,s/2\right) + \gamma_{1}\left(\beta_{2}(r,0)\right)}{\beta_{2}\left(r,s/2\right)}, \ s/2\right) + \gamma_{1}\left(\frac{\beta_{2}\left(r,s/2\right)}{\beta_{2}\left(r,s/2\right)}\right) + \frac{\beta_{2}\left(r,s/2\right)}{\beta_{2}\left(r,s/2\right)}$$

ullet So, eta is a class  $\mathcal{KL}$  func for all  $r\geq 0$ .

Hence, x = 0 is GUAS

© Feng-Li Lian 2004