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Converse Theorems (4.7) Ch4.7-3
e Two Questions:
— Is there a function
that satisfies the conditions of the Thms?
(Thm 4.9, 4.10, e.x.)

— How can we search for such a function?

e In many cases,
Lyapunov theory provides an affirmative
answer to the first question.

e T he answer takes the form of
a converse Lyapunov theorem, which is
the inverse of one of Lyapunov’s theorems.

e Most of these converse theorems are proven
by actually constructing auxiliary functions
that satisfy the conditions of the respective
theorems.
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Converse Theorems Ch4.7-4

e But, the construction almost always
assumes the knowledge of
the sol. of the diff. egn.

e In this section,
we give three converse Lyapunov theorems.

e The first one is a converse Lyapunov thm
when the origin is exponentially stable and,

e T he second,
when it is uniformly asymptotically stable.

e The third thm applies to autonomous syst.
and defines the converse Lyapunov func.
for the whole region of attraction of
an asymptotically stable equilibrium point.
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Theorem 4.14: E.S.

e Theorem 4.14:
e Let £ = 0 be an EP for the NL system

z = f(t,z)
where f:[0,00) x D — R" is cont. diff.,
D ={xz e R"|||z|]| <r},
and the Jacobian matrix [0f/0x] is
bdd on D, uniformly in t.

e Let k, A\, and rg be positive const.
with rg < T/k:.

o Let Do ={x € R"|||z|| < ro}.

e Assume that the traj. of the syst. satisfy
lz(®)]| < kllz(to)]|e 210,

Vz(tg) € Dg, Vt > tg >0

Ch4.7-5
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Theorem 4.14: E.S.

e T hen, there is a function
V :[0,00) X Dg — R
that satisfies the inequalities

crl|z||? < V(tx) < eol|z]|?

oV oV 5
2 (¢ < =
o o f(t2) < —callal

H?;H < cal|z]|

for some positive const. cq,co,c3, and c4.

e Moreover, if r = oo and the origin is G.E.S.,
then V (¢, z) is defined and satisfies
the aforementioned inequalities on R™.

e Furthermore, if the system is autonomous,
V can be chosen independent of ¢.

Ch4.7-6
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Theorem 4.14: E.S.

e Proof:

e Due to the equivalence of norms,
it is sufficient to prove the thm
for the 2-norm.

e Let ¢(7;t,z) denote the sol. of the syst.
that starts at (¢,x); that is, ¢(t;t,x) = =.

e For all z € Dy, ¢(7;t,z) € D for all > t.

e Let

vie) = [T 6 a6t e

where § is a positive constant to be chosen.

Ch4.7-7
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Theorem 4.14: E.S.

e Due to the exponentially decaying bound
on the trajectories,
we have

v = [T et

t+90
= [ letrita)Bar

IA

t+46
| R a3
t

k? Y 2
= 2_)\(1_6 )||33||2

e On the other hand,
the Jacobian matrix [0f/0x] is bdd on D.

Ch4.7-8
12()]] < K||z(to)||e A (—t0),

Vz(tg) € Dg, Yt > tg >0

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Theorem 4.14: E.S. Ch4.7-9
e Let

o
Hf(t,w)‘ <L,VxeD
ox 2

e Then, [|f(t,2)|l2 < L|[z||2 and
o(7;t,x) satisfies the lower bound

1673 8, 2)|13 > [|a|[3e~ 2L

e Hence,
t+6
Vita) = [ e Dar| )3
t

1 —2L§ 2
= i(l_e )||3U||2

e Thus, V(¢,x) satisfies
the first inequality of the theorem with

1 — —2Lé k’2 1 — —2X9
c1 = e and cp, = ( c )
2L 2\
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Theorem 4.14: E.S. Ch4.7-10

e To calculate the derivative of V
along the trajectories of the system,
define the sensitivity functions

. _ 9 .
(f)t(’]’,t,l’) — at(b(Tvtax)

bo(rit.z) = Do(rit,2)
ox

e Then, V(t,z) = /tH_(S ¢T(T;t,x)¢(T;t7$)dT

ov oV

= ¢T(t +6it,2)9(t +5it,2) — & (4 t,2)d(tit, )
+ [T i mamtadr + [ 26T ()it 2)dr (e 2)

= ¢T(t+ 8 t,2)p(t + 8 t,2) —||2|[3
t+6 T
n /t 267 (rit,2) |u(rit, ) + %ﬁ;t,m)f(t,x)} dr
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Theorem 4.14: E.S.

Ch4.7-11
e It is not difficult to show that (Ex 3.30)
¢t(7-; t,.I’) + ¢)ZU(T' t,%‘)f(t, CL’) = Oa VT Z t
e Therefore,
ov oV
— 4+ —f(t,x) = ¢T(t+ 8t 2)e(t+ 6 t,2) — ||2]|3
ot ox
< -1 -k )2|13
e By choosing § = In(2k2)/(2)),
the second inequality of the thm.
is satisfied with c¢3 = 1/2.
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Theorem 4.14: E.S. Ch4.7-12

e To show the last inequality, let us note that
oz (7;t, ) satisfies the sensitivity eqn.

0 0
8 ¢$ — f(7_7 ¢(T1 tym))¢w7 ¢Cb(t: ta .Z') - I
T ox

e Since ||9(¢,2)[|> < L on D,
¢, Satisfies the bound

|| (r; 8, 2)||p < eHT7D

e T herefore,

t+6
HG_VH - ||/ 207 (11 t, 2) (T t, ) drT

[ e |

t+6
/ le_A(T_t)eL(T_t)dTHﬂ|2
t

2

IA

qu(T;t,m)HQdT

2k —(\—
= e P

12()]] < K||z(to)||e A (—t0),

Vz(tg) € Do, Vt > to > 0
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Theorem 4.14: E.S.

e The last inequality of the thm. is satisfies

2k [1— e—()\—L)(S]

with ¢ =~
(A=L)

e If all the assumptions hold globally,
then rg can be chosen arbitrarily large.

e If the system is autonomous,
then ¢(7;t,z) depends only on (7 —1t); i.e.,

o(rt,x) = Y(1 —t, x)

Ch4.7-13

e Then, V(t,z) = /;Jré o7 (i t,2) (7 t, x)dT

via) = [T et -t - e

o)
= [T (si2)u(si 2)ds

which is independent of ¢.

e QED
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Theorem 4.15: E.S. of NL & L Systems

e Theorem 4.15:
e Let x =0 be an E.P. for the NL syst.

= f(t,z)
where f:[0,00) x D — R™ is cont. diff.,
D ={xe R"|||lz|l] <7}, and

the Jacobian matrix [0f/0z] is bdd and
Lipschitz on D, uniformly in ¢.

e Let

A(t) = %(t,x) .

e T hen,
=0 is an E.S. E.P. for the NL syst.
iff it is an E.S. E.P for the L syst.

z=A)z

Ch4.7-14
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Theorem 4.15: E.S. of NL & L Systems

Proof:
The “if" part follows from Thm 4.13.

To prove the “only if" part,
write the linear system as

= ftz)—[f(t,z) - A@®)z] = f(t, ) — g(¢,z)

Recalling the argument preceding
Thm 4.13, we know that

lg(t, 2)||2 < L||z||3, Y& € D, ¥t >0

Ch4.7-15
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Theorem 4.15: E.S. of NL & L Systems
Since x =0 is an E.S. E.P. of

the NL syst.,

there are positive const k, A, and ¢

such that

|2(8)||2 < k||z(to)||pe*E10),

Vt > tg > 0,V||z(to)||2 < c

Choosing rg < min{e, r/k},
all the conditions of Thm 4.14 are satisfied.

Let V(t,z) be the function

provided by Thm 4.14 and

use it as a Lyapunov function candidate
for the L syst.

Ch4.7-16
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Theorem 4.15: E.S. of NL & L Systems Ch4.7-17
e Then,

ov oV ov oV ov
- A — - - -
5 + O (t)z 5 + axf(t>$) 83}9@@)

2 3
—czl|z||5 + calllz||3

IN

< —(ez—calp)||z|l3, V||z|la <p

e The choice p < min{rg,c3/(cal)}
ensures that V(¢,z) is N.D. in ||z]|> < p.

e Consequently, all the conditions of
Thm 4.10 are satisfied in ||z||> < p,
and we conclude that
the origin is an E.S. E.P. for the L. syst.
QED
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Corollary 4.3 Ch4.7-18

e Corollary 4.3:
e Let x =0 be an E.P. of the NL syst.

= f(z)

where f(z) is cont. diff.
in some nbhd of x = 0.

e Let

=[o

e Then,
r =0 is an E.S. E.P. for the NL system
iff A is Hurwitz.
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Theorem 4.16: U.A.S.

e Theorem 4.16:
o Let x =0 be an E.P. for the NL syst.

= f(t,z)
where f:[0,00) x D — R™ is cont. diff.,
D={xec R"|||z||l2 <r}, and
the Jacobian matrix [0f/0x] is
bdd on D, uniformly in t.

e Let g be a class KL function and
ro be a positive constant
such that B(rg,0) < r.

o Let Do = {x € R"|||z|| < ro}.

Ch4.7-19
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Theorem 4.16: U.A.S.

e Assume that the traj. of the syst. satisfies
z@)|| < B(Jz(to)ll,t — to),

Vxz(tg) € Dg, Vt>tg>0

e Then, there is a cont. diff. function
V :[0,00) X Dg — R
that satisfies the inequalities

a1 ([|z]]) < V(¢ x) < ax(|l]])

oV ov
P 1+ % 11,2) < ~as(llel)

8

2| < calal

where a1, as, a3, and a4 are
class K functions defined on [0, rg].

Ch4.7-20

e If the system is autonomous,
V can be chosen independent of ¢.
e Proof: See Appendix C.7.
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Theorem 4.17: Region of Attraction
e Theorem 4.17:
e Let x =0 be an AS EP for the NL syst

= f(x)

where f: D — R™ is locally Lipschitz and
D C R"™ is a domain that contains z = 0.

e Let R4 C D be the region of attraction of

x = 0.

Then, there is a smooth, PD function V (z)
and a cont., PD function W(x),
both defined for all x € R4, such that

V(z) — 00 as ¢ — ORy

OV ) < ~W(a), Vo€ Ry
ox

and for any ¢ > 0,
{V(z) < c} is a compact subset of Ry4.

Ch4.7-21

e When R, = R",
V(z) is radially unbounded.

e Proof: See Appendix C.8.
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Theorem 4.17: Region of Attraction
e An interesting feeture of Thm 4.17 is that
any bounded subset S of
the region of attraction
can be included in a compact set
of the form {V(z) < ¢}
for some constant ¢ > 0.

e This feature is useful because quite often
we have to limit our analysis to
a positively invariant, compact set
of the form {V(z) < c}.

e With the property S C {V(z) < ¢},
our analysis will be valid
for the whole set S.

Ch4.7-22
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Theorem 4.17: Region of Attraction Ch4.7-23
e If, on the other hand,

all we know is the existence

of a Lyapunov function Vy(z) on S,

we will have to choose a constant ¢

such that {Vi(z) < ¢1} is compact and

included in S,

then our analysis will be limited to

{V1(x) < e1}, which is only a subset of S.
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