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U.A.S. of LTV Systems (4.6) Ch4.6-3

e Consider the linear time-varying systems:

b= Az (4.29)

—

° is an equilibrium point

e T he stability behavior of the origin

as an equilibrium point
can be completely characterized
in terms of the state transition matrix

of the system. /%(.()Jt“)

e Form linear system theory,
we know that the solutio

where ®(t,tg) is
T ~—~
the state transition matrix.
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Theorem 4.11: G.U.A.S. Ch4.6-4

e Theorem 4.11

e The equilibrium point z = 0 of (4.29) is
(globally) uniformly asymptotically stable

XIS G (Ixamll, 1t )
e if and only if the state transition matrix
satisfies the inequality

|t to)l| < k e‘*(t‘to),l Vt>to >0

for some positive constants k& and \.
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Theorem 4.11: G.U.A.S. Ch4.6-5

e Proof:
e Due to the linear dependence of

z(t) on z(tg),
if the origin is U.A.S., it is globally so.

e Sufficiency:
[z < [P, o)l |[z(to)l]
< kllz(to)|le A1)

e Necessity:
Suppose the origin is U.A.S.

e Then, there is a class KL function g
such that

2| < 6 (112, t—to),

Vt > tg, Vx(tg) € R"
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Theorem 4.11: G.U.A.S. Ch4.6-6

e By the def. of an induced matrix norm

n
74
- N

o o)l = max et

||lz||=1

(Appendix A), we have

max ﬁ(nwu, t—to)
[|z|

=1

= 6(1 t—to)

e Since (1,s) — 0 as s — oo,

I‘IVT/I L1 ] N
I VZl 1 "l——i\
T

_t
e For any t > to, KT

let N be the smallest positive integer
such that ¢t <tg+ NT.
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Theorem 4.11: G.U.A.S. Ch4.6-7
e Divide the interval [tg,to + (N — 1)T] into

(N —1) equal subintervals of width T' each. |
IaSEEatal
e Using the transition property of ®(t,tg),
we can write

O(tty) = & <t, to + (N — 1)T>

® (to + (N = 1T, tg+ (N — 2)T>

) (to + T, to)
e Hence,
k=N-1
[[@(t, to)|| < [|[Pto+ N —-1)D)| [ [P+ kT, to+ (k—1)T)|
k=1

k=N-1 1

< (1,00 [ ==ep@,0 e
k=1 €

< eB(1,0) e~ (t=10)/T — [ =X (t—t0)

where k =e3(1,0) and A =1/T. Q.E.D.
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Theorem 4.11: G.U.A.S. Ch4.6-8

e Theorem 4.11 shows that,
for linear systems,
U.A.S. of the origin = E.S..

e Note that,
for linear time-varying systems,
U.A.S. cannot be characterized
by the location of the eigenvalues of A.

e Thm 4.11 is not helpful as a stability test
because it needs to solve the state eqn.

e However, it quarantees
the existence of a Lyapunov function.
See Example 4.21, for example.
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e Proof:

o Let b= A(t) (),

P(t) = 5&(7, DQ(T)P(r,t)dr
and

o(7; t,z))be the solution of (4.29)
that starts at (¢, x).

e Due to linearity,
o(r;t,x) = d(7,1) =.

e In view of the definition of P(t), X (T)

we have

/toomT &T(r,£) Q(r) ®(r,1) z dr

— /t T T (rit,2) Q(r) $(rit, x)dr

(4.29)

Theorem 4.12: E.S. Ch4.6-9
e Theorem 4.12
e Let =0 be the E.S. E.P. of
z = A(t) z(t), (4.29)
e Suppose A(t) is continuous and bounded.
° Le@ be a cont., bdd., P.D., symm.
matrix. = P e
0 < 3l < Q1) < eI, Vt>0
e THEN, there is a cont. diff., bdd., P.D.,
symm. matrix P(t)
that satisfies:
—P(t) = P()A@®) + AT(OP() +Q(t) (4.28)
e Hence, V(t,z2) = 2T P(t)z is
a Lyapunov function of the system
that satisfies the conditions of Thm 4.10.
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Theorem 4.12: E.S. Ch4.6-10
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Theorem 4.12: E.S.

« Because |[9(t, )] <[k e20-10)
e And 0 < c3l <Q(t)

T x 2 2
TP < [ eal|®(r,0)|13 ||z]|3dr
r———ud t

k2cq, o
= @leb

2
S &) ||93||2

e On the other hand, since

A2 < L, Vvt=>0

the solution atisfies

the lower bound
[o(rit, 0B > laf3 e =

0
< / k2e M1 gr cal|z||3
t & =

Ch4.6-11

Exercise 3.17:

z = a(t)x
—L< a(t) <L
—Lx < T < Lz
e~ L(t—to) < z(t) < L (t—t0)

o —2L(t—1t0) < 22(t) SeQL(tfto)
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Theorem 4.12: E.S.

e Hence,

T o 2
TPWz = [ esllé(rita)|Bdr
t

€3 2
= —|lz
=2 1e113

2
= ¢ ||z]l5

e Thus, ¢ ||:c||% < a:TP(t)a: < o ||a:||%

which shows that P(t) is P.D. and bdd.

e The definition of P(t) shows that
it is symm. and cont. diff..

0
> / 672L(T7t)d7'63||$||%
t

Ch4.6-12
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Theorem 4.12: E.S. Ch4.6-13

e And
P(t) = ST+, Q)P (r,t)dr
z(r) = CD(E)Q?@ le fg
d 0 d '

Lo

] I T U \

0 = OEDIDF O DA 4 +
V]

G-y T

G
FEICDIEELICHRIO

e In particular,

P(t) = / ST (r,DQ(T) CD(’T‘ £) d¢+/ [ T (r, t)} O(r)D(r.t) dr — Qt)

—

= [T TR0 drja®) — AT [T T (1. HQ(NP(,1) dr - Q1)

= —PA®) — AT(t)P(t) — Q(t)

e The fact that (V(t z) = 2T P(t)x

is a Lyaunov function is shown in Ex 4.21.

Q.E.D.
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Linearization to Non-autonomous System Ch4.6-14

e Consider the nonlinear nonautonomous sys

= f(t,z)

where f:[0,00] x D — R™ is cont. diff.
and D ={z € R"| ||z||2 < r}.

e Suppose the origin £ = 0 is an E.P.
for the systems at ¢t = O;
that is, f(¢,0) = 0 for all t > 0.

e Furthermore, suppose
the Jacobian matrix [0f/dx] is bdd. and
Lipschitz on D, uniformly in t; thus,

o o
|2k iy 4y — f@(t xz)H < Liller — zollo,

Vrqi,xp0 € D, Vt >0 for all 1 <i<mn.
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Linearization to Non-autonomous System

Ch4.6-15
e By the mean value theorem,
Of;
fz(t 33) = fz(t O) + Z(t Z@)CE
where z;, is a point on the line segment
connecting x to the origin.
e Since f(t,0) =0
we can write f;(t,z) as
9fi
filt,z) = ’(t zp)x
0 0 0
= Yitt, 000+ [ Yt ) - i, 00| 2
e Hence, f(t,z) = A(t)z+ g(t,z)
where
A(t) = gf(t 0) and
git, ) = [Fi(t, ;) — Gft,0)] 2
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Linearization to Non-autonomous System Ch4.6-16

e The function g(t,z) satisfies
of; of;
loCt, 2l < (z 1%,z - Zic 0 )

2
< Ll=ll3

where L = \/nL;.

e Therefore, in a small nbhd of the origin,
we may approximate the nonlinear system
by its linearization about the origin.

e The next theorem states
Lyapunov's indirect method
for showing E.S. of the origin
in the nonautonomous case.

/2

[|2||2
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Theorem 4.13: E.S. of Non-Auto Syst. Ch4.6-17
e Theorem 4.13:
e Let x =0 be an E.P. for the NL sys

= f(t,z)
where f : [0,0] x D — R"™ is cont. diff.,
D ={z e R"[|lz|]2 <r},
and the Jacobian matrix [0f/0z] is bdd.
and Lipschitz on D, uniformly in ¢.

e Let
of
A(t) = 5 (t:2) |s=0
e
e Then, the origin is an E.S. E.P.

for the nonlinear system
if it is an E.S. E.P. for the linear system

z=A)x
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Theorem 4.13: E.S. of Non-Auto Syst. Ch4.6-18

e Proof:

e Since the linear system has an E.S. E.P. at
the origin and
A(t) is cont. and bdd.,
Them 4.12 ensures the existence of a
cont.diff., bdd., P.D. symm. matrix P(t)
that satisfies (4.28),

where Q(t) is cont., P.D., and symm.

e We use V(t,z) =z P(¢)z as

a Lyapunov func. candidate for the NL sys.

—P(t) = P()A(t) + AT(t)P(t) + Q(t) (4.28)
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Theorem 4.13: E.S. of Non-Auto Syst. Ch4.6-19

e The derivative of V(t,z)
along the trajectories of the sys is given by 0 <ec3l <Q(t) <ecal

Vit,2) = 2T P()i+ i (t,2)P(t)z + 2T P(t)z el I<P@t)<erl

— 2TP@) ftz) + Tt )Pz + 2T P(8)x lott. )l < L =3
= 2T [P(t)A(t) + AT P@) + P(t)} z+ 22T P(H)g(t, z)
= —27Q)x + 22T P(t)g(t, x)

< —esllelz+2 e L ||z

< —(ez —2caLp)||z||3, V||z|l2 < p

e Choosing p < min{r,c3/(2¢coL)} e Therefore, all the conditions of Thm 4.10

ensures that are satisfied in ||z||> < p, and

V(t,z) is N.D. in [fz]]2 < p. we conclude that the origin is E.S..
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