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E.P. of Non-Autonomous Systems (4.5)

e Consider the nonautonomous system:

&= f(t,z) (4.15)

where f:[0,00] x D — R"

is piecewise continuous in t and
locally Lipschitz in z on [0,00] X D,
and D C R" is a domain

that contains the origin 2 = 0.

e If f(t.0) =0,Vt >0,
the origin is an E.P. for (4.15) att =10

e An equilibrium point at the origin
could be a translation of a nonzero E.P. or,
a translation of a nonzero sol. of the syst.

Ch4.5-3
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E.P. of Non-Autonomous Systems
e TO see the latter point,

suppose y(7) is a solution of the system
dy

i g(1,y)

defined for all 7 > a.

e The change of variables

r=y—y(r); t=717—a

e Transforms the system into the form

t = g(r,y)—y(r)
= g(t+az+yit+a))—yit+a)
£ f(t, o)

Ch4.5-4
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E.P. of Non-Autonomous Systems Ch4.5-5

e Since

y(t+a) =gt +a,y(t+a)),vt >0

the origin x = 0 is an E.P. of
the transformed system at ¢t = 0.

e SO, by examining the stability behavior of
the origin
as an E.P. for the transformed system,
we determine the stability behavior of
the solution 7(7) of the original system.

e Notice that if y(7) is not constant,
the transformed system will be
nonautonomous
even when the original system is
antonomous,
that is, even when ¢g(7,y) = g(y).
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Stability and Asymptotic Stability Ch4.5-6
e This is why

studying the stability behavior of solutions

in the sense of Lyapunov can be done

only in the context of

studying the stability behavior of

the equilibria of nonautonomous systems.

e The notions of stability and
asymp. stability of
E.P. of nonautonomous systems
are basically the same as those
introduced in Definition 4.1
for autonomous systems.
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Stability and Asymptotic Stability

e This is why
studying the stability behavior of solutions
in the sense of Lyapunov can be done
only in the context of
studying the stability behavior of
the equilibria of nonautonomous systems.

e The notions of stability and
asymp. stability of
E.P. of nonautonomous systems
are basically the same as those
introduced in Definition 4.1
for autonomous systems.

Ch4.5-7
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Stability and Asymptotic Stability

e The new element here is that,
while the sol. of an autonomous system
depends only on (¢t —tg),
the sol. of a nonautonomous system
may depend on both ¢t and tp.

e S0, the stability behavior of E.P. will,
in general, depend on tg.

e The origin x = 0 is a stable E.P. for (4.15)
if, for each € > 0, and any tg > 0
there is § = §(e,tg) > 0 such that

[z(to)[| < & = [lz(D)]| <e, Vt=>tg

Ch4.5-8
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Stability and Asymptotic Stability

e The constant 4, in general,
depends on the initial time .

e The existence of § for every tg
does not necessarily guarantee that
there is one constant 4,
dependent only on &,
that would work for all tg,
as illustrated by the next example.

Ch4.5-9
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Example 4.17: Stability Case
e Example 4.17:

e T he linear first-order system
z = (6tsint — 2t)x

has the solution

t
2(t) = :c(to)exp[/ (67sinT — 27)dr]
lo
= z(tp) exp[6sint — 6tcost — t2
—6sintg + 6ty costy + t3]

e For any to,
the term —t2 will evertually dominate,
which shows that
the exp term is bounded for all ¢t > tg
by a constant ¢(tg) dependent on tg.

Ch4.5-10
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Example 4.17: Stability Case

e Hence,

lz(t)| < |z(to)lc(to), Vt = tg

e For any € > 0,
the choice § = ¢/¢(tg) shows that
the origin is stable.

e Suppose tg takes on the successive values
to = 2nm, forn=0,1,2,..., and
x(t) is evaluated = seconds later
in each case.

Ch4.5-11
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Example 4.17: Stability Case
e Then,

z(to + 7) = z(to) exp[(4n + 1)(6 — 7)7]
which implies that, for x(tg) # 0,

z(tg + )
———— — X dS n — o0
z(tg)
e Thus, given € > 0,
there is no ¢ independent of tg
that would satisfy the stability requirement
uniformly in tq.

Ch4.5-12
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Example 4.18: Asymp. Stability Case Ch4.5-13
e Example 4.18:
e The linear first-order system
£
€r = —
14t
has the solution
t -1
xz(t) = x(tg)ex / dr
(1) = w(to)exp() ——dn)
1+t
= x(lg)
14t
e Since |z(t)| < |z(tg)|, Vt > to,
the origin is clearly stable.
e Actually, given any € > 0,
we can choose 4 independent of tg.
e It is also clear that
z(t) = 0as t — oo
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Example 4.18: Asymp. Stability Case Ch4.5-14

e Consequently, assording to Definition 4.1,
the origin is asymptotically stable.

e Notice, however, that
the convergence of x(t) to the origin
is not uniform wrt the initial time tg.

e Recall that
convergence of x(t) to the origin
is equivalent to saying that,
given any £ > 0, there's T'=T(e,tg) > 0
such that |z(t)| <e, forall t > tg+ T

e Alghough this is ture for every tg,
the constant 7" cannot be chosen
independent of tg.
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Definitions of Stability, etc. Ch4.5-15
e Definition 4.4:
e The equilibrium point z = 0 of (4.15) is
— stable if, for each ¢ > 0,
there is 6 = d(e,tg) >0
such that ||z(tg)|| < d = ||z (t)|| < e,
YVt >tg >0 (4.16)

— uniformly stable if, for each € > 0O,
there is § = §(¢) > O, independent of tg,
such that (4.16) is satisfied.

— unstable if it is not stable.

— asymptotically stable
if it is stable and
there is a positive constant ¢ = ¢(tg)
such that z(t) — 0 as t — oc,
for all ||z(tg)|| < c.
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Definitions of Stability, etc. Ch4.5-16
e — uniformly asymptotically stable
if it is uniformly stable and
there is a positive constant ¢, in. of tg,
such that for all ||z(tg)|| < ¢,
z(t) — 0 as t — oo, uniformly in tg;
that is, for each n > 0,
there is T'=T(n) > 0 such that

x| < n, YVt > to + T'(n), V|[z(to)|| <c

— globally uniformly asymptotically stable
if it is uniformly stable,
d(g) can be chosen to satisfy
lime—o0 d(e) = o0, and,
for each pair of positive numbers n & «¢,
there is "= T(n,¢) > 0 such that

eIl <n, ¥t > to+T(n,c), Y|lz(to)ll < e
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Lemma 4.5 Ch4.5-17
e Lemma 4.5:
e The E.P. x = 0 of (4.15) is
— uniformly stable
iff there exist a class K function « and
a positive constant ¢,
independent of ¢y, such that

vVt >tg >0, V|z(tog)||l <c

le(®)]] < a(ll=(to)]]) (4.19)

— uniformly asymptotically stable
iff there exist a class KL function g and
a positive constant ¢,
independent of ¢y, such that

vt > tg >0, V||z(to)l| < c

lz(®]] < B(|lz(to)ll.t —to) (4.20)
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Lemma 4.5 Ch4.5-18

e — globally uniformly asymptotically stable
iff inequality (4.20) is satisfied
for any initial state z(¢p).
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Definition 4.5 Ch4.5-19
e Definition 4.5
e The E.P. x =0 of (4.15) is
— exponentially stable
if there exist positive constants ¢, k, &
A
such that
()| < kllz(to)|le2710), W]la(to)]| < c
— and globally exponentially stable
if the above inequality is satisfied
for any initial state z(tg).
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Theorem 4.8: U.S. & Proof Ch4.5-20

e [heorem 4.8:
e Let x =0 be an E.P. for (4.15) and
D C R™ be a domain containing = 0.

e Let V:[0,00] x D — R be
a continuously differentiable func such that

Wi(z) < V(L z) < Wa(z)

YVt >0 and Vx € D,
where Wq(xz) and Ws(x) are
continuous P.D. functions on D.

e Then, x = 0 is uniformly stable,
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Theorem 4.8: U.S. & Proof

e Proof:

e The derivative of V

along the trajectories of (4.15) is given by

oV

+ gf(iﬁw’b‘) <0
ox

e Chooser>0andc¢>0

such that B, C D and ¢ < min|,=,W1(z).

e Then, {z € By | Wi(x) <c}is
in the interior of B;.

e Define a time-dependent set €2 . by

QE,C - {m E B’r | V(f“’j‘)) g C}

Ch4.5-21
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Theorem 4.8: U.S. & Proof
e Since Wo(z) <c= V(t,z) <,
the set Q; . contains {z € B, | Wa(z) < ¢}

e On the other hand,
since V(t,z) <c= Wi(z) <e¢,
Q4. is a subset of {x € B | Wi(z) < c}.

e Thus,
{zx € By | Wo(z) <c} C e C
{vx € By | Wi(z) <c}C B CD

for all t > 0.

Ch4.5-22
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Theorem 4.8: U.S. & Proof Ch4.5-23

e In Figure, the surface V(t,z) = ¢ is now
dependent on ¢,
and that is why it is surrounded
by the time-independent surfaces
Wi(x) = c and Wo(z) =c.

e Since V(t,z) <0 on D,
for any tg > 0 and any zg € Q¢ ¢,

the solution starting at (g, o)
stays in €2; . for all t > t.

e Therefore, any solution starting
in {z € By | Wo(z) <c} stays in €,
and consequently in {z € B | Wy(z) < ¢},
for all futute time.
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Theorem 4.8: U.S. & Proof Ch4.5-24

e Hence, the solution is bounded and
difined for all t > tg.

e Moreover, since V < 0,

V(t,z(t)) < V(tg,z(tg)), YVt > tg

e By Lemma 4.3,
there exist class K functions
a1 and ap, defined on [0, r], such that

ar(|[z]]) < Wi(z) <

V(t,z) < Wa(z) < ax(|[z]])
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Theorem 4.8: U.S. & Proof
e Combining the preceding two inequalities,
we see that

|lz()]] < a3 2V (¢, z(t))) <

a7 Y (V (Lo, 2(10))) < a7 Haa(llx o))

e Since o»[l oo is a class K function
(by Lemma 4.2),
the inequality [[z()|| < o' (a2(|lz(t)]))
shows that the origin is uniformly stable.

e QED

Ch4.5-25
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Theorem 4.9: U.A.S. & G.U.AS.

e Theorem 4.9:

e Suppose the assumptions of Theorem 4.8
are satisfied with strengthened inequality:

oV OV
—+ —flt,z) < -W3(z)
i ox

VYt > 0 and Yz € D,
where W3(x) is a continuous P.D. func on
D.

e Then, x=20is
uniformly asymptotically stable.

Ch4.5-26
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Theorem 4.9: U.A.S. & G.U.A.S.

Ch4.5-27
e Moreover, if » and ¢ are chosen such that
By ={||lz|| <7} C D & ¢ < min =, W1(z),
then every trajectory starting
in {z € By | Wa(z) < ¢} satisfies
llz (O] < B(||z(to)l]. t — to, VE > tg >0
for some class KL function 3.
e Finally, if D = R"™ and Wy (x) is
radially unbounded,
then z =0 is
globally uniformly asymptotically stable.
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Theorem 4.9: U.A.S. & G.U.A.S. Ch4.5-28

e Proof:

e Continuing with the proof of Thm 4.8,
we know that trajectories starting
in {z € By | Wa(x) < ¢} stay
in {z € By | W1(x) < c} for all t > tg.

e By Lemma 4.3,
there exists a class K function as,
defined on [0, 7], such that

: 0 0
V(ta) = S+ D)
—Ws(x)

IN A

—aa(]z|])

e Using the inequality

V < as(llal]) <= a5 1 (V) < ||a]| <>

az(ay (V) < as(|lz|])
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Theorem 4.9: U.A.S. & G.U.A.S.
¢ We see that
V' satisfies the differential inequality

V < —az(a; Lov)) 2 —a(V)

1

where o = agzoa, ™ is a class K function

defined on [0,r]. (See Lemma 4.2.)

e Assume, without loss of generality, that
« is locally Lipschitz.

e Let y(t) satisfy the autonomous equation

y = —a(y), y(to) = V(tg,z(tg)) > 0

e By (the comparison) Lemma 3.4,

V(t,z(t)) < y(t), Vt 2 tg

Ch4.5-29
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Theorem 4.9: U.A.S. & G.U.A.S.

e By Lemma 4.4,
there exists a class KL function o(r.s)
defined on [0, r] x [0,0c] such that

V(t: I(t)) < (}‘(V(fio, 'T(to))f t— tO)?

YV (tg.z(tg)) € [0,¢]

e Therefore, any solution starting in
{z € By | Wo(z) < ¢} satisfies the inequality

lz@®)]] < ay ' (V(E2(1))

ai H(a(V (to, #(to)), t — to))
ay o (ea(llz(to)ID, t — to))
B(llz(to)ll,t — to)

> IA 1A

Ch4.5-30
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Theorem 4.9: U.A.S. & G.U.A.S.

Ch4.5-31

e Lemma 4.2 shows that

3 is a class KL function.
e Thus, inequality (4.20) is satisfied,

which implies that

x = 0 is uniformly asymptotically stable.
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Theorem 4.9: U.A.S. & G.U.A.S. Ch4.5-32

e If D= R",
the functions a1, @, and asg
are defined on [0, o).

e Hence, «, and consequently 3,
are independent of c.

e As Wi (x) is radially unbounded,
¢ can be chosen arbitrarily large
to include any initial state in {W>(z) < ¢}.

e Thus, (4.20) holds for any initial state,
showing that the origin is
globally uniformly asymptotically stable.

e QED
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PD, ND & US, UAS, GUAS Ch4.5-33
e A function V(t,z) is said to be

e positive semidefinite
if V(t,z) >0,

e positive definite
if V(t,z) > Wi(z)
for some positive definite function Wy (z),

e radially unbounded
if Wi(x) is so,

e decrescent
if V(t,z) < Wo(x).

e neqative definite (semidefinite)
if =V (t,z) is positive definite (semidefinite).
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PD, ND & US, UAS, GUAS Ch4.5-34
e Therefore, Theorems 4.8 and 4.9 say that
the origin is

— uniformly stable
if there is a continuously differentiable,
PD, decresscent function V (t,z),
whose derivative along the trajectories
of the system
is negative semidefinite.

— uniformly asymptototically stable
if the derivative is neqative definite, and

— globally uniformly asymptotically stable
if the conditions
for uniform asymptotic stability
hold globally
with a radially unbounded V (¢, z).
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Theorem 4.10: E.S. & G.E.S.

e Theorem 4.10:
e Let x =0 be an E.P. for (4.15) and
D C R™ be a domain containing x = 0.

e Let V:[0,¢] x D — R be
a continuously differentiable function s.t.
k1ll2]|® < V(t,a) < kollz|® (4.25)

ov. oV
—f(t,x) < —k3l|z||* (4.26
o+ S f () < —ksllall® (4.26)

YVt >0 and Vx € D,
where k1, ko, k3, and a are 4+ constants.

e Then, x = 0 is exponentially stable.

e If the assumptions hold globally,
then x = 0 is globally exponentially stable.

Ch4.5-35
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Theorem 4.10: E.S. & G.E.S.

e Proof:

e With the help of Figure 4.7,
it can be seen that for sufficiently small ¢,
trajectories starting in {ks||z||* < ¢},
remain bounded for all t > tg.

e Inequalities (4.25) and (4.26) show that
V' satisfies the differential inequality
V< —ﬁv
k2

e By (the comparison) Lemma 3.4,

k
V(t,z(t)) < V(to, x(fgo))e_(g)({'—m)

Ch4.5-36
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Theorem 4.10: E.S. & G.E.S. Ch4.5-37

e Hence,
V(t,2(t)) 1 /4
el < I
< [V(to,m(to))e*(k3/k2)(t*to)]1/a
k1
< (ralleCo)lite” e/, ),
< -
= ("2y1a)5010) e ka/k2a) o)
k1

e T hus, the ori

gin is exponentially stable.

e If all the assumptions hold globally,

¢ can be chosen arbitrarily large and

the foregoing

inequality holds

for all x(tg) € R"™.

e QED

| © Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.19: G.U.A.S. Ch4.5-38
e Example 4.19 :

e Consider the

scalar system

&= —[1 4 g(t)]>

where g(t) is

continuous and

g(t) >0 for all t > 0.

e Using the Ly
V(z) = 22/2,

we obtain

V(t,x)

apunov function candidate

= —[1 4 g®]z* < —2*,

Vee R, Vt >0

e The assumptions of Theorem 4.9

are satisfied globally
with Wy (z) = Wa(x) = V(x) and e Hence, the origin is

Wa(z) = z2.

globally uniformly asymptotically stable.
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Example 4.20: G.E.S.

e Example 4.20 :
e Consider the system

vy = —z1—g(t)z
To = 1 — 2
where g(t) is cont. diff. and satisfies

0 <g(t) <kand g(t) <g(t), vt >0

e Taking V(t,z) = :}:% +[1+ g(t)]:f:%
as a Lyapunov function candidate,
it can be easily seen that

27+ 23 < V(t,z) < a3+ (1+ k)23, Vo € R?

e Hence, V(t,z) is PD, decrescent,
and radially unbounded.

Ch4.5-39
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Example 4.20: G.E.S.

e The derivative of V along the trajectories
of the system is given by

V(t,x) = —223+2z120— [2+29(t) — §(t)]23

e Using the inequality
24+29(t) —g(t) >2429(t) —g(t) > 2
we obtain

Vit,z) < —233% + 2z — 2:10%

(1>

—:cTQx

where Q is PD; therefore, V (¢,z) is ND.

Ch4.5-40
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Example 4.20: G.E.S.

Thus, all the assumptions of Thm 4.9
are satisfied globally
with PD quadratic func Wy, W5, and Ws.

Recalling that
a PD quadratic function 2T P satisfies

Amin(P)zTz < 2T Pz < Amax(P)z!z

we see that the conditions of Thm 4.10
are satisfied globally with a = 2.

Hence, the origin is
globally exponentially stable.

Ch4.5-41
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Example 4.21: G.E.S. of LTV System

Example 4.21:
The linear time-varying system

= A(t)x
has an E.P. at z = 0.

Let A(t) be continuous for all ¢ > 0.

Suppose there is a
cont. diff.,, sym., bdd, PD matrix P(t);
that is,

0<cI <P(t)<cpl,Vt>0
which satisfies the matrix diff. eqn (4.28)
—P(t) = P()A(t) + AT(®)P(t) + Q(t)

where Q(t) is cont., sym., and PD;
that is,

Q(t) > e3l >0,Vt>0

Ch4.5-42
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Example 4.21: G.E.S. of LTV System
e The Lyapunov function candidate
V(t,z) =z P(t)x
satisfies
c1ll|3 <V (t,2) < cof |3
and its derivative along the trajectories
of the system (4.27) is given by
Vit,z) = 2T Pz + 2T P)i + &7 P(t)x
2! [P() + P(OA®) + AT (O P()]e
—a" Q1)
—callz]3

[

e Thus, all the assumptions of Thm 4.10
are satisfied globally with ¢« = 2, and
we conclude that the origin is
globally exponentially stable,

Ch4.5-43
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