Nonlinear Systems Analysis

Lecture Note

Section 4.4 Comparison Functions (Lyapunov Stability)

Feng-Li Lian NTU-EE Sep04 – Jan05

Outline Ch4.4-2

- Introduction (L8)
- Autonomous Systems (4.1, L8, L9)
 - Basic Stability Definitions
 - Lyapunov's stability theorems
- The Invariance Principle (4.2, L9+L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L10)
- Comparison Functions (4.4, L11)
- Non-autonomous Systems (4.5, L11)
- Linear Time-Varying Systems & Linearization (4.6, L11+0.5)
- Converse Theorems (4.7, L12)
- Boundedness & Ultimate Boundedness (4.8, L12)
- Input-to-State Stability (4.9, L13)

Comparison Functions (4.4)

Ch4.4-3

• From autononous to nonautonomous

- The sol of the nonautonomous syst $\dot{x}=f(t,x)$, starting at $x(t_0)=x_0$, depends on both t and t_0 .
- ullet Should refine the definitions to let stability hold uniformly in the initial time t_0 .
- Hence, we need some special comparison functions.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Class K & KL Functions

Ch4.4-4

- Definition 4.2 (Class K):
- A continuous function

$$\alpha:[0,a)\to[0,\infty)$$

is said to belong to class $\mathcal K$

if it is strictly increasing and $\alpha(0) = 0$.

ullet It is said to belong to class \mathcal{K}_{∞}

if $a = \infty$ and $\alpha(r) \to \infty$ as $r \to \infty$.

```
Class K & KL Functions
```

Ch4.4-5

Definition 4.3 (Class KL):

```
• A continuous function \beta: [0,a) \times [0,\infty) \rightarrow [0,\infty)
```

is said to belong to class $\mathcal{K}\mathcal{L}$

if, for each fixed s,

the mapping $\beta(r,s)$ belongs to class $\mathcal K$

w.r.t. r and,

for each fixed r,

the mapping $\beta(r,s)$ is decreasing w.r.t. s

and $\beta(r,s) \to 0$ as $s \to \infty$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.16

Ch4.4-6

- Example 4.16:
- \bullet $\alpha(r) = \tan^{-1}(r)$ is strictly increasing

since $\alpha'(r) = 1/(1+r^2) > 0$.

It belongs to class K,

but not class \mathcal{KL}

since $\lim_{r\to\infty} \alpha(r) = \pi/2 < \infty$.

• $\alpha(r) = r^c$,

for any positive real number c,

is strictly increasing

since $\alpha'(r) = cr^{c-1} > 0$.

Moreover, $\lim_{r\to\infty} \alpha(r) = \infty$;

thus, it belongs to class \mathcal{K}_{∞} .

Example 4.16

Ch4.4-7

- $\bullet \ \alpha(r) = \min\{r, r^2\}$
- is continuous, strictly increasing,
 - and $\lim_{r\to\infty} \alpha(r) = \infty$.

Hence, it belongs to class \mathcal{K}_{∞} .

- Notice that $\alpha(r)$ is
 - not continuously differentiable at r = 1.

Continuous differentiability is not required

for a class $\ensuremath{\mathcal{K}}$ function.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.16

Ch4.4-8

- $\beta(r,s) = r/(ksr+1)$,
- for any positive real number k,
 - is strictly increasing in r

since

$$\frac{\partial \beta}{\partial r} = \frac{1}{(ksr+1)^2} > 0$$

and strictly decreasing in \boldsymbol{s}

since

$$\frac{\partial \beta}{\partial s} = \frac{-kr^2}{(ksr+1)^2} < 0$$

Moreover, $\beta(r,s) \to 0$ as $s \to \infty$.

Therefore, it belongs to class \mathcal{KL} .

 $\bullet \ \beta(r,s) = r^c e^{-s},$

for any positive real number \emph{c} ,

belongs to class \mathcal{KL} .

Lemma 4.2 Ch4.4-9

- Lemma 4.2:
- Let α_1 and α_2 be class \mathcal{K} functions on [0,a), α_3 and α_4 be class \mathcal{K}_{∞} functions and β be a class \mathcal{KL} function.
- Denote the inverse of α_i by α_i^{-1} .
- Then,
 - $-\alpha_1^{-1}$ is defined on $[0,\alpha_1(a))$ and belongs to class \mathcal{K} .
 - $-\alpha_3^{-1}$ is defined on $[0,\infty)$ and belongs to class \mathcal{K}_{∞} .
 - $-\alpha_1 \circ \alpha_2$ belongs to class \mathcal{K} .
 - $-\alpha_3\circ\alpha_4$ belongs to class \mathcal{K}_{∞} .
 - $-\sigma(r,s) = \alpha_1(\beta(\alpha_2(r),s))$ belongs to class \mathcal{KL} .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Lemma 4.3 Ch4.4-10

- Lemma 4.3:
- Let $V:D\to R$ be a continuous P.D. function defined on a domain $D\subset R^n$ that contains the origin.
- Let $B_r \subset D$ for some r > 0.
- Then, there exist class $\mathcal K$ functions α_1,α_2 , defined on [0,r], such that

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$$

for all $x \in B_r$.

Lemma 4.3 Ch4.4-11

- If $D=R^n$, α_1,α_2 will be defined on $[0,\infty)$ and the foregoing inequality will hold $\forall x\in R^n$.
- Moreover, if V(x) is radially unbounded, then α_1, α_2 can be chosen to belong to class \mathcal{K}_{∞} .
- $\bullet \text{ If } V(x) = x^T P x,$

$$\lambda_{\min}(P)||x||_2^2 \le x^T P x \le \lambda_{\max}(P)||x||_2^2$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Lemma 4.4 Ch4.4-12

- Lemma 4.4:
- Consider the scalar autonomous D.E.

$$\dot{y} = -\alpha(y), \quad y(t_0) = y_0$$

where $\alpha(\cdot)$ is a local Lipschitz class \mathcal{K} func defined on [0,a).

- For all $0 \le y_0 < a$, this equation has a unique solution y(t)defined for all $t \ge t_0$.
- Moreover,

$$y(t) = \sigma(y_0, t - t_0)$$

where σ is a class \mathcal{KL} function defined on $[0, a) \times [0, \infty)$.

Lemma 4.4 Ch4.4-13

- Examples:
- If $\dot{y} = -ky$, k > 0, then

$$y(t) = y_0 \exp[-k(t - t_0)]$$

$$\sigma(r,s) = r \exp(-ks)$$

• If $\dot{y} = -ky^2$, k > 0, then

$$y(t) = \frac{y_0}{ky_0(t - t_0) + 1}$$

$$\sigma(r,s) = \frac{r}{krs + 1}$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Comparison Funs & Lyapunov Analysis

Ch4.4-14

- For the proof of Thm 4.1:
- Want to choose β, δ such that $B_{\delta} \subset \Omega_{\beta} \subset B_r$.
- For a P.D. function V(x), it satisfies

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$$

we can choose $\beta \leq \alpha_1(r)$ and $\delta \leq \alpha_2^{-1}(\beta)$.

• This is so because

$$V(x) \le \beta \Rightarrow \alpha_1(||x||) \le \alpha_1(r) \text{ iff } ||x|| \le r$$

and $||x|| \le \delta \Rightarrow V(x) \le \alpha_2(\delta) \le \beta$.

- For $\dot{V}(x)$ is N.D.,
 - $x(t) \to 0$ as $t \to \infty$.

Comparison Funs & Lyapunov Analysis

Ch4.4-15

- Using Lemma 4.3 we see that there is a class \mathcal{K} function α_3 such that $\dot{V}(x) \leq -\alpha_3(||x||)$.
- \bullet Hence, V satisifies the diff. inequality

$$\dot{V} \le -\alpha_3(\alpha_2^{-1}(V))$$

ullet Comparison lemma (Lma 3.4) shows that V(x(t)) is bounded by the solution of

$$\dot{y} = -\alpha_3(\alpha_2^{-1}(y)), \quad y(0) = V(x(0))$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Comparison Funs & Lyapunov Analysis

Ch4.4-16

- Lemma 4.2 shows that $\alpha_3 \circ \alpha_2^{-1}$ is a class $\mathcal K$ function.
- Lemma 4.4 shows that the solution is $y(t) = \beta(y(0), t)$, where β is a class \mathcal{KL} function.
- Consequently, V(x(t)) satisfies $V(x(t)) \leq \beta(V(x(0)), t)$, which shows that $V(x(t)) \to 0$ as $t \to \infty$.

```
Comparison Funs & Lyapunov Analysis
```

Ch4.4-17

- Estimates of x(t)
- $V(x(t)) \le V(x(0))$ implies

```
\alpha_1(||x(t)||) \le V(x(t)) \le V(x(0)) \le \alpha_2(||x(0)||)
```

- Hence, $||x(t)|| \le \alpha_1^{-1}(\alpha_2(||x(0)||))$, where $\alpha_1^{-1} \circ \alpha_2$ is a class $\mathcal K$ function.
- Similarly, $V(x(t)) \leq \beta(V(x(0)), t)$ implies

$$\alpha_1(||x(t)||) \le V(x(t)) \le \beta(V(x(0)), t)$$
$$\le \beta(\alpha_2(||x(0)||), t)$$

• Therefore, $||x(t)|| \le \alpha_1^{-1}(\beta(\alpha_2(||x(0)||), t))$, where $\alpha_1^{-1}(\beta(\alpha_2(r), t))$ is a class \mathcal{KL} func.

© Feng-Li Lian 2004

Nonlinear Systems Analysis