Nonlinear Systems Analysis

Lecture Note

Section 4.2
Invariance Principle
(Lyapunov Stability)

Feng-Li Lian NTU-EE Sep04 – Jan05

Outline Ch4.2-2

- Introduction (L8)
- Autonomous Systems (4.1, L8, L9)
 - Basic Stability Definitions
 - Lyapunov's stability theorems
- The Invariance Principle (4.2, L9+L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L10)
- Comparison Functions (4.4, L11)
- Non-autonomous Systems (4.5, L11)
- Linear Time-Varying Systems & Linearization (4.6, L11+0.5)
- Converse Theorems (4.7, L12)
- Boundedness & Ultimate Boundedness (4.8, L12)
- Input-to-State Stability (4.9, L13)

LaSalle's Invariance Principle (§4.2)

Ch4.2-3

- The pendulum equation with friction (Example 4.4):
- The energy Lyapunov function fails to satisfy the asymptotic cond. of Thm 4.1 because $\dot{V}(x) = -bx_2^2$ is only negative semidefinite.
- But, $\dot{V}(x)$ is negative everywhere, except on the line $x_2=0$, where $\dot{V}(x)=0$.
- For the system to maintain $\dot{V}(x) = 0$, the trajectory of the system must be confined to the line $x_2 = 0$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

LaSalle's Invariance Principle (4.2)

Ch4.2-4

• Unless $x_1 = 0$, this is impossible because from the pendulum equation

$$x_2(t) \equiv 0 \Rightarrow \dot{x}_2(t) \equiv 0 \Rightarrow \sin x_1(t) \equiv 0$$

- Hence, on $-\pi < x_1 < \pi$ of the $x_2 = 0$ line, the system can maintain $\dot{V}(x) = 0$ only at the origin x = 0.
- So, V(x(t)) must decrease toward 0 and, consequently, x(t) → 0 as t → ∞, which is consistent with the fact that, due to friction, energy cannot remain constant while the system is in motion.

LaSalle's Invariance Principle (4.2)

Ch4.2-5

LaSalles invariance principle:

• If in a domain about the origin we can find a Lyapunov function whose derivative along the trajectories of the systems is negative semidefinite, and if we can establish that no trajectory can stay identically at points where $\dot{V}(x) = 0$, except at the origin, then the origin is asymptotically stable.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Positive Limit Set & Invariant Set

- Let x(t) be a solution of (4.1).
- A point p is said to be a positive limit point of x(t) if there is a sequence $\{t_n\}$, with $t_n \to \infty$ as $n \to \infty$, such that $x(t_n) \to p$ as $n \to \infty$.
- The set of all positive limit points of x(t) is called the positive limit set of x(t).
- A set M is said to be an invariant set with respect to (4.1) if $x(0) \in M \Rightarrow x(t) \in M, \ \forall t \in R$

Positive Limit Set & Invariant Set

Ch4.2-7

- That is, if a solution belongs to M
 at some time instant,
 then it belongs to M
 for all future and past time.
- A set M is said to be
 a positively invariant set if

$$x(0) \in M \Rightarrow x(t) \in M, \ \forall t \ge 0$$

ullet We also say that x(t) approaches a set M as $t \to \infty$, if for each $\epsilon > 0$ there is T > 0 such that

$$dist(x(t), M) < \epsilon, \ \forall t > T$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Positive Limit Set & Invariant Set

- Where dist(p, M) denotes
 the distance from a point p to a set M,
 that is, the smallest distance
 from p to any point in M.
- More precisely, $\operatorname{dist}(p, M) = \inf_{x \in M} ||p x||$.
- The equilibrium point and the limit cycle are invariant sets, since any solution starting in either set remains in the set for all t∈ R.
- x(t) approaches M as $t \to \infty$ does not imply that $\lim_{t \to \infty} x(t)$ exists.

Lemma 4.1:

Ch4.2-9

- Lemma 4.1:
- If a solution x(t) of (4.1) is bounded and belongs to D for $t \ge 0$, then its positive limit set L^+ is a nenempty, compact, invariant set. Moreover, x(t) approaches L^+ as $t \to \infty$.
- Proof: See Appendix C.3.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Theorem 4.4: LaSalle's Theorem

- Theorem 4.4 (LaSalle's theorem):
- Let $\Omega \subset D$ be a compact set that is positively invariant w.r.t. (4.1).
- Let $V:D\to R$ be a cont. diff. func. such that $\dot{V}(x)<0$ in Ω .

- Let E be the set of all points in Ω where $\dot{V}(x) = 0$.
- Let M be the largest invariant set in E.
- Then every solution starting in Ω approaches M as $t \to \infty$.

Theorem 4.4: LaSalle's Theorem

Ch4.2-11

- Proof:
- Let x(t) be a solution of (4.1) starting in Ω .
- Since $\dot{V}(x) \leq 0$ in Ω , V(x(t)) is a decreasing function of t.

- Since V(x) is continuous on the compact set Ω , it is bounded from below on Ω .
- Therefore, V(x(t)) has a limit a as $t \to \infty$.
- Also note that, because Ω is a closed set, the positive limit set L^+ is in Ω

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Theorem 4.4: LaSalle's Theorem

- For any $p \in L^+$, there is a sequence t_n with $t_n \to \infty$ and $x(t_n) \to p$ as $n \to \infty$.
- By continuity of V(x), $V(p) = \lim_{n \to \infty} V(x(t_n)) = a$.

- Hence, V(x) = a on L^+ .
- By Lemma 4.1,
 since L⁺ is an invariant set,
 \(\bar{V}(x) = 0\) on L⁺.
- Thus, $L^+ \subset M \subset E \subset \Omega$

Theorem 4.4: LaSalle's Theorem

Ch4.2-13

- Since x(t) is bounded, x(t) approaches L^+ as $t \to \infty$ (by Lemma 4.1).
- Hence, x(t) approaches M as $t \to \infty$.
- D $\Omega: \dot{V}(x) \leq 0$ $E: \dot{V}(x) = 0$ M

• Q.E.D.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Theorem 4.4: LaSalle's Theorem

- Thm 4.4 does not require the function V(x) to be positive definite.
- Also, note that
 the construction of the set Ω
 does not have to be tied in
 with the construction of the function V(x)
- The consctruction of V(x) will itself guarantee the existence of a set Ω .
- When V(x) is positive definite, Ω_c is bounded for sufficiently small c>0.

Theorem 4.4: LaSalle's Theorem

Ch4.2-15

- This is not necessarily true when V(x) is not positive definite.
- For example, if $V(x) = (x_1 x_2)^2$, the set Ω_c is not bounded no matter how small c is.
- If V(x) is radially unbounded - that is, $V(x) \to \infty$ as $||x|| \to \infty$ the set Ω_c is bounded for all values of c.
- This is true whether or not V(x) is positive definite.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Corollaries 4.1 & 4.2:

Ch4.2-16

- Showing that $x(t) \to 0$ as $t \to \infty$.
- By showing that

no solution can stay identically in E,

other than the trivial solution x(t) = 0.

Corollary 4.2:

Nonlinear Systems Analysis

- Corollary 4.2 (Krasovskii's theorem):
- Let x = 0 be an E.P. for (4.1).

© Feng-Li Lian 2004

- Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable, radially unbounded, positive definite function such that $\dot{V}(x) \leq 0$ for all $x \in \mathbb{R}^n$.
- Let S = {x ∈ Rⁿ | V̇(x) = 0} and suppose that no solution can stay identically in S, other than the trivial solution x(t) ≡ 0.
- Then, the origin is globally asymptotically stable.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Corollaries 4.1 & 4.2:

Ch4.2-19

- When $\dot{V}(x)$ is negative definite, $S = \{0\}.$
- Then, Corollaries 4.1 and 4.2 coincide with Theorems 4.1 and 4.2 respectively.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.8:

Ch4.2-20

- Example 4.8:
- Consider the system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -h_1(x_1) - h_2(x_2)$

where $h_1(\cdot)$ and $h_2(\cdot)$ are locally Lipschitz and satisfy

$$h_i(0) = 0,$$

$$yh_i(y) > 0, \forall y \neq 0 \text{ and } y \in (-a, a)$$

- The system has an isolated E.P. at the origin.
- Depending upon $h_1(\cdot)$ and $h_2(\cdot)$, it might have other equilibrium points.

Example 4.8:

Ch4.2-21

- The system can be viewed as a generalized pendulum with h₂(x₂) as the friction term.
- Therefore, a Lyapunov function candidate may be taken as the energy-like function

$$V(x) = \int_0^{x_1} h_1(y) dy + \frac{1}{2} x_2^2$$

• Let $D = \{x \in R^2 \mid -a < x_i < a\};$ V(x) is positive definite in D and

$$\dot{V}(x) = h_1(x_1)x_2 + x_2[-h_1(x_1) - h_2(x_2)]
= -x_2h_2(x_2) \le 0$$

is negative semidefinite.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.8:

Ch4.2-22

• To find $S = \{x \in D \mid \dot{V}(x) = 0\}$, note that

$$\dot{V}(x) = 0 \Rightarrow x_2 h_2(x_2) = 0 \Rightarrow x_2 = 0,$$
 since $-a < x_2 < a$

- Hence, $S = \{x \in D \mid x_2 = 0\}.$
- Let x(t) be a solution
 that belongs identically to S:

$$x_2(t) \equiv 0 \Rightarrow \dot{x}_2(t) \equiv 0 \Rightarrow$$

$$h_1(x_1(t)) \equiv 0 \Rightarrow x_1(t) \equiv 0$$

• Therefore, the only solution that can stay identically in S is the trivial solution $x(t) \equiv 0$.

 Thus, the origin is asymptotically stable. Example 4.9: Ch4.2-23

- Example 4.9:
- Consider again the system of Example 4.8, but this time let $a = \infty$ and assume that $h_1(\cdot)$ satisfies the additional condition:

$$\int_0^y h_1(z) o \infty$$
 as $|y| o \infty$

• The Lyapunov function

$$V(x) = \int_0^{x_1} h_1(y) dy + (1/2)x_2^2$$

is radially unbounded.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.9:

Ch4.2-24

• Similar to the previous example, it can be shown that $\dot{V}(x) \leq 0$ in R^2 , and the set

$$S = \{x \in R^2 \mid \dot{V}(x) = 0\}$$
$$= \{x \in R^2 \mid x_2 = 0\}$$

contains no solutions other than the trivial solution.

- Hence, the origin is globally asymptotically stable.
- Not only does LaSalle's theorem
 relax the negative definiteness requirement
 of Lyapunovs theorem,
 but it also extends Lyapunov's theorem
 in three different directions.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.9:

Ch4.2-25

- First, it gives an estimate of the region of attraction, which is not necessarily of the form $\Omega_c = \{x \in R^n \mid V(x) \le c\}.$
- The set Ω of Theorem 4.4
 can be any compact positively invariant set.
- Second, LaSalle's theorem can be used in cases
 where the system has an equilibrium set, rather than an isolated equilibrium point.
- This will be illustrated by an application to a simple adaptive control example.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Example 4.9:

- Third, the function V(x) does not have to be positive definite.
- The utility of this feature will be illustrated by an application to the neural network example.