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LaSalle’s Invariance Principle (§4.2) Ch4.2-3

e T he pendulum equation with friction
(Example 4.4):

e The energy Lyapunov function fails to
satisfy the asymptotic cond. of Thm 4.1
because V(z) = —bz3 is only
negative semidefinite.

e But, V(z) is negative everywhere,
except on the line 2z, =0,
where V(z) = 0.

e For the system to maintain V(z) = 0,
the trajectory of the system
must be confined to the line o, = 0.
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LaSalle’s Invariance Principle (4.2) Cha.2-4
e Unless z; = 0, this is impossible
because from the pendulum equation

2(t) =0=a2(t) =0=sinz1(t) =0

e Hence, on —7m < 21 < mw of the zo = 0 line,
the system can maintain V(z) =0
only at the origin 2 = 0.

e So, V(z(t)) must decrease toward O
and, consequently, z(t) — 0 as t — oo,
which is consistent with the fact that,
due to friction,
energy cannot remain constant
while the system is in motion.
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LaSalle’s Invariance Principle (4.2) Ch4.2-5

e LaSalles invariance principle:

e If in a domain about the origin
we can find a Lyapunov function
whose derivative
along the trajectories of the systems
is negative semidefinite,
and if we can establish that
no trajectory can stay identically at points
where V(z) = 0,
except at the origin,
then the origin is asymptotically stable.
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Positive Limit Set & Invariant Set Ch4.2-6
e Let z(t) be a solution of (4.1).

e A point p is said to be
a positive limit point of z(t)
if there is a sequence {t,},
with t, — o0 as n — oo,
such that z(¢,) — p as n — oc.

e The set of all positive limit points of z(t)
is called the positive limit set of z(t).

e A set M is said to be
an invariant set with respect to (4.1)

if 2(0) € M= z(t) e M, Vt€ R
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Positive Limit Set & Invariant Set

Ch4.2-7
e That is, if a solution belongs to M
at some time instant,
then it belongs to M
for all future and past time.
e A set M is said to be
a positively invariant set if
z(0) e M = x2(t) e M, ¥Vt > Q
e We also say that
z(t) approaches a set M as t — oo,
if for each € >0 thereisT >0
such that
dist(z(t), M) <e, YVt >T
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Positive Limit Set & Invariant Set Cha.2-8

e Where dist(p, M) denotes
the distance from a point p to a set M,
that is, the smallest distance
from p to any point in M.

e More precisely, dist(p, M) = inf e/ |lp—2||.

e The equilibrium point and the limit cycle
are invariant sets,
since any solution starting in either set
remains in the set for all t € R.

e x(t) approaches M as t — oo
does not imply that limy_ z(t) exists.
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Lemma 4.1: Ch4.2-9
e Lemma 4.1:
e If a solution z(t) of (4.1) is bounded

and belongs to D for t > 0,

then its positive limit set LT is

a nenempty, compact, invariant set.

Moreover, z(t) approaches L1 as t — oc.

e Proof: See Appendix C.3.
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Theorem 4.4: LaSalle’s Theorem Ch4.2-10

e Theorem 4.4 (LaSalle’s theorem):

e Let 2 C D be a compact set
that is positively invariant w.r.t. (4.1).

e Let V:D — R be a cont. diff. func.
such that V(z) <0 in Q.

e Let F be the set of all points in 2
where V(z) = 0.

e Let M be the largest invariant set in E.

e Then every solution starting in 2
approaches M as t — oc.
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Theorem 4.4: LaSalle’s Theorem

e Proof:

Ch4.2-11

e Let z(t) be a solution of (4.1)
starting in Q.

e Since V(z) <0 in Q,
V(x(t)) is a decreasing function of ¢.

e Since V(x) is continuous
on the compact set €2,
it is bounded from below on £2.

e Therefore, V(z(t)) has a limit a as t — .

e Also note that,
because €2 is a closed set,
the positive limit set LT is in Q
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Theorem 4.4; LaSalle’s Theorem
e Forany pe LT,

Ch4.2-12

there is a sequence t, with ¢, — oc
and z(tp) — p as n — oo.

e By continuity of V(x),
V(p) = limn—oo V(2(tn)) = a.

e Hence, V(z) =a on LT.

e By Lemma 4.1,
since LT is an invariant set,
V(z) =0o0n LT.

e Thus, LFc M CcECQ
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Theorem 4.4: LaSalle’s Theorem

e Since z(t) is bounded,
x(t) approaches Lt as t — o
(by Lemma 4.1).

e Hence, z(t) approaches M as t — oc.

e Q.E.D.

Ch4.2-13
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Theorem 4.4: LaSalle’s Theorem

e Thm 4.4 does not require
the function V(z) to be positive definite.

e Also, note that
the construction of the set €2
does not have to be tied in
with the construction of the function V (x)

e The consctruction of V(x)
will itself guarantee
the existence of a set 2.

e When V(z) is positive definite,
Q2. is bounded for sufficiently small ¢ > 0.

Ch4.2-14
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Theorem 4.4: LaSalle’s Theorem Ch4.2-15

e This is not necessarily true
when V(z) is not positive definite.

e For example, if V(z) = (1 — 22)%,
the set 2. is not bounded

no matter how small ¢ is.

e If V(x) is radially unbounded
- that is, V(z) — oo as ||z|| — oo -
the set Q. is bounded for all values of c.

e T his is true whether or not
V(x) is positive definite.
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Corollaries 4.1 & 4.2: Ch4.2-16
e Showing that x(t) — 0 as t — cc.

e By showing that
no solution can stay identically in F,
other than the trivial solution z(t) = 0.
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Corollary 4.1:

Corollary 4.1 (Barbashin’s theorem) :
Let x =0 be an E.P. for (4.1).

Let V:D — R be

a continuously differentiable

positive definite function

on a domain D containing the origin x = 0,
such that V(2) <0 in D.

Let S={ze D|V(z) =0} and
suppose that

no solution can stay identically in S,
other than the trivial solution z(¢) = 0.

Then, the origin is asymptotically stable.

Ch4.2-17
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Corollary 4.2:

Corollary 4.2 (Krasovskii's theorem) :
Let x =0 be an E.P. for (4.1).

Let V:R"— R be

a continuously differentiable,
radially unbounded,

positive definite function

such that V(z) < 0 for all z € R™.

Let S={z e R"|V(z) =0} and
suppose that

no solution can stay identically in S,
other than the trivial solution z(t) = 0.

Then, the origin is
globally asymptotically stable.

Ch4.2-18
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Corollaries 4.1 & 4.2: Ch4.2-19

e When V (z) is negative definite,
S = {0}.

e Then, Corollaries 4.1 and 4.2 coincide with
Theorems 4.1 and 4.2 respectively.
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Example 4.8: Ch4.2-20

e Example 4.8:
e Consider the system

T = x5

p = —hy(z1) — ho(z2)
where h1(-) and hs(-)
are locally Lipschitz and satisfy

hi(0) =0,

yhi(y) >0, Yy # 0 and y € (—a,a)

e T he system has an isolated E.P.
at the origin.

e Depending upon hy(-) and hx(-),
it might have other equilibrium points.
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Example 4.8:

e The system can be viewed as
a generalized pendulum
with ho(zo) as the friction term.

e T herefore, a Lyapunov function candidate
may be taken as the energy-like function

x 1
V(@) = [ h)dy + 523

o let D={x€R?| —a<umz<a};
V(z) is positive definite in D and

V(z) = hi(z1)ze + xa[—h1(z1) — ho(zo)]
= —x2ha(z2) <0

is negative semidefinite.

Ch4.2-21
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Example 4.8:
e To find S={xz € D|V(z) =0},
note that

V(m) =0= $2h2($2) =0=x0=0,

since —a < xzp < a

e Hence, S={z € D |z = 0}.

e Let z(¢) be a solution
that belongs identically to S:

2o(t) =0 = 1a2(t) =0 =

hi(z1(t)) =0=21(t) =0

e Therefore, the only solution
that can stay identically in S is
the trivial solution z(t) = 0.

Ch4.2-22

e Thus, the origin is
asymptotically stable.
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Example 4.9:

Ch4.2-23
e Example 4.9:
e Consider again the system of Example 4.8,
but this time let ¢« = oo and assume that
hq(-) satisfies the additional condition:
Y
| h1(z) = o0 as [yl = o0
e The Lyapunov function
-:L'l 2
V(@)= [ hi(y)dy + (1/2)a3
is radially unbounded.
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Example 4.9: Ch4.2-24

e Similar to the previous example,
it can be shown that
V(z) <0 in R?,
and the set

S = {veR?|V(z) =0}
{z € R?| 2o = 0}
contains no solutions
other than the trivial solution.

e Hence, the origin is
globally asymptotically stable.

e Not only does LaSalle’s theorem
relax the negative definiteness requirement
of Lyapunovs theorem,
but it also extends Lyapunov's theorem
in three different directions.
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Example 4.9: Ch4.2-25
e First, it gives
an estimate of the region of attraction,

which is not necessarily of the form
Qe={z e R"|V(z) <c}.

e The set 2 of Theorem 4.4
can be any compact positively invariant set.

e Second, LaSalle’s theorem can be used
in cases
where the system has an equilibrium set,
rather than an isolated equilibrium point.

e T his will be illustrated by an application to

a simple adaptive control example.
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Example 4.9: Ch4.2-26
e Third, the function V(z) does not have to
be positive definite.

e The utility of this feature will be illustrated
by an application to
the neural network example.
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