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Introduction Ch4.1-3

e Stability theory plays a central role
in systems theory and engineering.
In this book, we will discuss
stability of equilibrium points (Chap 4),
input-output stability, and
stability of periodic orbits.

e Stability of equilibrium points is usually
characterized in the sense of Lyapunov,
a Russian mathematician and engineer.

e An equilibrium point is stable
if all solutions
starting at nearby points stay nearby;
otherwise, it is unstable.
It is asymptotically stable
if all solutions starting at nearby points
not only stay nearby,
but also tend to the equilibrium points
as time approaches infinity.
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Introduction Ch4.1-4

e Section 4.1:
Basic theorems of Lyapunov’'s method
for autonomous systems
e Section 4.2:
An extension of the basic theory, LaSalle.
e Section 4.3:
Stability of E.P. of @(t) = Axz(t):
by the location of the eigenvalues of A.
e Section 4.4:
Class K and class KL functions
e Section 4.5:
Uniform stability,
uniform asymptotic stability, and exponen-
tial stability for nonautonomous systems
e Section 4.6:
Linear time-varying systems and
linearization
e Section 4.7:
Converse theorems
e Section 4.8:
Boundedness and utlimate boundedness
e Section 4.9:
Input-to-state stability
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Autonomous Systems (§4.1) Ch4.1-5
e Consider the autonomous system
= f(z) (4.1)
where f: D — R" is
a locally Lipschitz map
from a domain D C R"™ into R™.
e Suppose r € D is an equilibrium point
of (4.1); that is, f(z) = 0.
Our goal is to characterize and study
the stability of z.
e For convenience,
we state all definitions and theorems
for the case
when the equilibrium point is
at the origin of R™; that is, z = 0.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Autonomous Systems Ch4.1-6

e Suppose z # 0 and

consider the change of variables y = z — Z.

The derivative of vy is given

by y =z = f(z) = f(y +7):= g(v),

where ¢(0) = 0.

e In the new variable v,

the system has equilibrium at the origin.
Therefore, without loss of generality (wlog),

we will always assume that
f(x) satisfies f(0) =0

and study the stability of the origin z = 0.
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Basic Stability Definitions cha4.1-7
e Definition 4.1
The equilibrium point z = 0 of (4.1) is
stable
if, for each € > 0, there is § = §(¢) >0
such that
[z(0)|| <6 = [lz(t)|| <e&Vt>0

unstable
if it is not stable.
asymptotically stable
if it is stable and § can be chosen
such that

|z(0)|| < d= lim z(t) =0

t—oo
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Pendulum Example Ch4.1-8

e the pendulum example.

1 = x9
To = —asSinzy — bxo

has two equilibrium points
at (z1 = 0,20 =0) and (x1 = 7,20 = 0).

e Let b = 0, (neglecting friction),
trajectories in the neighborhood
of the first equilibrium pt are closed orbits.

e Therefore, by starting sufficiently close to
the equilibrium point,
trajectories can be guaranteed to stay
within any specified ball centered
at the equilibrium point.
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Pendulum Example Ch4.1-9

e Hence, the ¢ — § requirement
for stability is satisfied.

e T he equilibrium point, however,
iIs not asymptotically stable
since trajectories starting
off the equilibrium point
do not tend to it eventually.
Instead, they remain in their closed orbits.

e Let b > 0, (friction is considered)
the equilibrium point at the origin
becomes a stable focus.

e Inspection of the phase portrait
of a stable focus shows that
the € — 6 requirement
for stability is satisfied.
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Pendulum Example Ch4.1-10

e In addition, trajectories starting
close to the equilibrium point tend to it
as t tends to .

e SO, it is AS.

e T he second equilibrium point
at 1 = m is a saddle point.

e Clearly the € — § requirement
cannot be satisfied
since, for any € > 0,
there is always a trajectory
that will leave the ball {x € R™ | ||z—Z|| < €}
even when z(0) is arbitrarily close to
the equilibrium point z.
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Determining Stability

e Actually finding all solutions
= May be difficult or even impossible.
= Try energy concepts first.

e Define the energy of the pendulum E(x)
as potential energy + Kinetic energy,
with the reference of the potential energy
chosen such that E(0) = 0; that is,

x 1
E(x) = /Olasinydy—l—ixg

1
= a(l —coszy) + 5:13%

Ch4.1-11
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Determining Stability

e When friction is neglected (b = 0),
the system is conservative;
that is, there is no dissipation of energy.

e Hence, EF = constant during the motion of
the system or, in other words,
dE /dt = 0 along the trajectories.

e Since E(z) = ¢ forms a closed contour
around x = 0 for small ¢,
we can again arrive at the conclusion that
xz = 0 is a stable equilibrium point.

d
—F
dt (.I') ox1 Oxo

(asinzi)dr 4 (z2)2o

(asinz)xz + (z2)(—asinz — bxo)
—ba3

(I
8
e
+
&
N

Ch4.1-12
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Determining Stability Ch4.1-13

e When friction is accounted for (b > 0),
energy will dissipate
during the motion of the system,
that is, dE/dt <0
along the trajectories of the system.

e Due to friction,
E cannot remain constant indefinitely
while the system is in motion.

e Hence, it keeps decreasing
until it eventually reaches zero,
showing that
the trajectory tends to z =0
as t tends to oc.
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Determining Stability Ch4.1-14

e Thus, by examining the derivative of E
along the trajectories of the system,
it is possible to determine
the stability of the equilibrium point.

e In 1892, Lyapunov showed that
certain other functions could be used
instead of energy to determine stability
of an equilibrium point.
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Lyapunov Stability (§4.1)

e lLetV:D— R be
a continuously differentiable function
defined in a domain D C R"
that contains the origin.

e The derivative of V
along the trajectories of (4.1),
denoted by V(x), is given by

. "oV .
"oV
= Z; 6’—:cifi(x)
fi(z)
oV oV oV fo(x)

Oxy Ozo " Oy,

oV
= @

Ch4.1-15
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Lyapunov Stability
e The derivative of V
along the trajectories of a system
is dependent on the system’s equation.

e Hence, V(z) will be different for different
systems.

e If ¢(t;z) is the solution of (4.1)
that starts at initial state z at time t = 0,
then
. d
V() =V (et 2)

Therefore, if V(z) is negative,
V will decrease along the solution of (4.1).

Ch4.1-16
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Lyapunov’s Stability Theorem Ch4.1-17
e Theorem 4.1:

Let z = 0 be an equilbrium point for (4.1)
and D C R"™ be a domain containing z = 0.
Let V:D — R be

a continuously differentiable function

such that

V(0) =0 and V(z) >0 in D — {0} (4.2)

V(z) <0 in D (4.3)

Then, z = 0 is stable.

Moreover, if
V(z) <0in D — {0} (4.4)

then z = 0 is asymptotically stable.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Lyapunov’s Stability Theorem: Proof - 1 Ch4.1-18
e Proof:

e Given ¢ > 0, choose r € (0, €]
such that

By ={e€R"||lz] <r}C D

Let a = minHmH:TV(a:).
Then, a > 0 by (4.2).

Take B € (0,a) and let
Qg={z€ By |V(z) <}

Then, €25 is in the interior of B;.
(See Figure 4.1.)
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Lyapunov’s Stability Theorem: Proof - 2 Ch4.1-19
e Because in Q2g3,

any trajectory starting in €23 at ¢ =0,

and Vvt >0

V(z(t)) <0= V(z(t)) <V(z(0)) <

e In 23, any trajectory starting in ij att=20
stays in €25 for all t > 0.

e Q4 is closed by definition and
bounded (contained in B;).
Hence, it is compact.

e We conclude from Theorem 3.3 that
(4.1) has a unique solution defined Vt > 0
whenever z(0) € €23.
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Lyapunov’s Stability Theorem: Proof - 3 Ch4.1-20

e As V(z) is continuous and V(0) = 0,
there is o > O such that

|zl <6 = V(z) <B

e Then,

B(g - Qﬁ C Br
and

x(0) € Bs = z(0) € Qg

= x(t) € Qg = z(t) € Br

e T herefore,

[z(0)|| <= [lz(¥)|| <r <eVt>0

which shows that
the equilibrium point # = 0 is stable.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis




Lyapunov’s Stability Theorem: Proof - 4 Cha.1-21

e Now, assume that (4.4) holds as well.

e To show asymptotic stability,
we need to show that
z(t) — 0 as t — oo;
that is, for every a > 0O, thereis T >0
such that ||z(t)|| < a, for all ¢t > T.

e By repetition of previous arguments,
we know that for every a > 0,
we can choose b > 0

such that $2, C Bq.

e Therefore, it is sufficient to show that
V(x(t)) — 0 as t — oo.
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Lyapunov’s Stability Theorem: Proof - 5 Ch4.1-22

e Since V(z(t)) is monotonically decreasing
and bounded from delow by zero.
V(z(t)) = c>0ast—

e To show that ¢ =0,
we use a contradiction argument.

e Suppose ¢ > 0.
By continuity of V(x),
there isd >0
such that B; C Q..

e The limit V(z(t)) — ¢ > 0 implies that
the trajectory z(t) lies outside B,, Vt > 0.
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Lyapunov’s Stability Theorem: Proof - 6 Ch4.1-23
e Because the continuous function V(z)

has a maximum

over the compact set {d < ||z|| < r}.

Let —y = maxg<|jy<r V(@)

e By (4.4), -y <O.
It follows that

V() = V((0)+ /OtV(wm)dT
< V(2(0)) -yt

e Since the right-hand side will eventually
become negative,
the inequality contradicts the assumption

that ¢ > 0.
e QED
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Lyapunov’s Stability Theorem - 1 Ch4.1-24

e A continuously differentiable function V (z)
satisfying (4.2) and (4.3)
is called a Lyapunov function.

e The surface V(x) = ¢, for some ¢ > 0,
is called a Lyapunov surface or
a level surface.

e Using Lyapunov surfaces,
we notice that
Figure 4.2 makes the theorem
intuitively clear.

e It shows Lyapunov surfaces
for increasing values of c.

CI{CE<C3
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Lyapunov’s Stability Theorem - 2

e The condition V < 0 implies that
when a trajectory crosses
a Lyapunov surface V(z) = ¢,
it moves inside the set
Q.= {zeR"|V(x) < c}
and can never come out again.

e When V < 0,
the trajectory moves
from one Lyapunov surface
to an inner Lyapunov surface
with a smaller c.

Ch4.1-25
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Lyapunov’s Stability Theorem - 3

e As ¢ decreases,
the Lyapunov surface V(z) = ¢
shrinks to the origin,
showing that
the trajectory approaches the origin
as time progresses.

e If we only know that V <0,
we cannot be sure that
the trajectory will approach the origin,
but we can conclude that
the origin is stable
since the trajectory can be contained
inside any ball B,
by requiring the initial state z(0)
to lie inside a Lyapunov surface
contained in that ball.

Ch4.1-26
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Positive/Negative (Semi) Definiteness - 1 (§4.1) Ch4.1-27
e A function V(z) satisfying condition (4.2)

that is, V(0) =0 and V(z) > 0 for 2 # 0O,

is said to be positive definite.

e If it satisfies the weaker condition
V(z) > 0 for z # 0,
it is said to be positive semidefinite.

e A function V(z) is said to be
negative definite or negative semidefinite
if —V(x) is positive definite or
positive semidefinite, respectively.

e If V(2) does not have a definite sign
as per one of these four cases,
it is said to be indefinite.
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Positive/Negative (Semi) Definiteness - 2 Ch4.1-28
e With this terminology,

we can rephrase Lyapunov's theorem

to say that

the origin is stable

if there is a continuously differentiable

positive definite function V(x)

so that V(z) is negative semidefinite,

and it is asymptotically stable

if V() is negative definite.

e A class of scalar functions for which
sign definiteness can be easily checked
is the class of functions of
the quadratic form

n n
Viz) = o Z Z PijTiTj
i=1j=1

where P is a real symmetric matrix.

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Positive/Negative (Semi) Definiteness - 3 Ch4.1-29
e In this case,

V(x) is positive definite

(positive semidefinite)

iff all the eigenvalues of P are positive
(nonnegative),
which is true

iff all the leading principal minors of P
are positive
(all principal minors of P are nonnegative).

e If V(z) = zT Pz is positive definite
(positive semidefinite),
we say that the matrix P is positive definite
(positive semidefinite)
and write P > 0 (P > 0).

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Example 4.1 -1 Ch4.1-30
e Example 4.1
Consider
V(z) = ax?+ 2x123 + a3 + daoxz + ax3
a 01 r1
= [xq1ap23] | O a 2 o
{ 1 2 a J { T3 J
= 2Py

e The leading principal minors of P
are a,a?, and a(a? —5).

e Therefore, V(z) is positive definite

if a > /5.
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Example 4.1 - 2

e For negative definiteness,

the leading principal minors of —P

should be positive;

that is , the leading principal minors of P
should have alternating signs, with

the odd-numbered minors being negative
&

the even-numbered moinors being positive.

Consequently, V(x) is negative definite

if a < —/5.

By calculating all principal minors,

it can be seen that

if a > /5, V(z) is positive semidefinite
and if a < —/5, negative semidefinite

e For a € (—/5,v5), V(z) is indefinite.

Ch4.1-31
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Example 4.1 — 3: Remarks

Lyapunov's theorem can be applied
without solving the differential equation.

On the other hand,
there is no systematic method
for finding Lyapunov functions.

In some cases, there are

natural Lyapunov function candidates
like energy functions in electrical or
mechanical systems.

In other cases,
it is basically a matter of trial and error.

But, here, we will try to find some hints
through various examples and applications.

Ch4.1-32
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Example 4.2 -1

Ch4.1-33
e Example 4.2
Consider the differential equation
= —g(z)
where g(z) is locally Lipschitz on (—a,a)
and satisfies
g(0) = 0;
zg(xz) >0, YVx#£ 0 and z € (—a,a) g(xw
=y ‘
e A a possible g(x) is shown is Fig. 4.3. ‘
e The system has an isolated equilibrium
point at the origin.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Example 4.2 -2 Ch4.1-34

e It is not difficult in this simple example
to see that
the origin is asymptotically stable,
because solutions starting on
either side of the origin
will have to move toward the origin
due to the sign of the derivative z.

e To arrive at the same conclusion
using Lyapunov's theorem,
consider the function

V(z) = ]; 9(y)dy

e Over the domain D = (—a,a),
V(x) is continuously differentiable,
V(0) =0, and V(z) > 0, Vz # 0.
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Example 4.2 - 3 Ch4.1-35

e Thus, V(z) is a valid
Lyapunov function candidate.

e To see whether or not
V(z) is indeed a Lyapunov function,
we calculate its derivative
along the trajectories of the system.

2—,‘/[—9(3:)1
T
= —g¢%(z) <0,Vz € D — {0}

V(z)

e Hence, by Theorem 4.1 we conclude that
the origin is asymptotically stable.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 4.3 -1 Ch4.1-36

e Example 4.3
Consider the pendulum egn w/o friction

Tl = T
o> = —aSinzy

and let us study the stability of
the equilibrium point at the origin.

e A natural Lyapunov function candidate
is the energy function

V(z) =a(l —cosz1) + %L%

e Clearly, V(0) =0 and
V(z) is positive definite
over the domain —27 < z1 < 2.
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Example 4.3 -2 Ch4.1-37
e The derivative of V(xz)

along the trajectories of the system

is given by

V(.L‘) = a-i']_ sin €T + :I:Q.’,'CQ

= axpSinz] —axpSinxzy;= 0

e Thus, conditions (4.2) and (4.3)
of Theorem 4.1 are satisfied,
and we conclude that the origin is stable.

e Since V(z) =0,
we can also conclude that
the origin is not asymptotically stable;
for trajectories starting
on a Lyapunov surface V(z) = ¢
remain on the same surface
for all future time.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 44-1 Ch4.1-38
e Example 4.4
Consider the pendulum egn with friction
r1 = x>

rn» = —asinxzy — bxo

e Again, let us try
V(z) =a(l —coszy) + (1/2)3:%
as a Lyapunov function candidate.

V(z) = aiqsinx, + xoip = —b;{:%

e The derivative V() is
negative semidefinite.
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Example 4.4 - 2 Ch4.1-39

e It is not negative definite
because V(z) = 0 for 2o =0
irrespective of the value of zq;
that is, V(z) = 0 along the xq-axis.

e Therefore, we can only conclude that
the origin is stable.

e However, using the phase portrait
of the pendulum equation,
we have seen that when b > 0,
the origin is asymptotically stable.

e The energy Lyapunov function
fails to show this fact.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 44-3 Ch4.1-40

e We will see later in Section 4.2 that
LaSalle's theorem will enable us
to arrive at a different conclusion.

e For now, let us look for
a Lyapunov function V(z)
that would have a negative definite V(z).

e Starting from the energy Lyapunov func

let us replace the term 33 by

the more general quadratic form %mTPm

for some 2 x 2 positive definite matrix P:

1
Viz) = ExTP:E—l-a(l—COS:El)
1 P11 P12 | | *1
= —|T1X
2[ 122] P12 P22 M)

+ a(l —coszy)
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Example 4.4 - 4 Ch4.1-41

e For the quadratic form %;{:TP:L‘
to be positive definite,
the elements of the matrix P must satisfy

P11 > 0, p11p22 —}0%2 >0

e The derivative V(z) is given by

V(z) = (p1171+ p1oxo + asinzy)wo
(p1271 + poox2)(—asinz — bxo)

CL(]. - pQQ).’I]Q sin 1 — api1>xq sin 1

_|_

e Now we want to choose pi11,p12, and poo
such that V() is negative definite.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 44-5 Ch4.1-42

e Since the cross product terms zosinzq and
r1xo are sign indefinite,
we will cancel them
by taking poo =1 and py1 = bpyo.

e With these choices,
p12 must satisfy 0 < p1o < b
for V(z) to be positive definite.

e Let us take p1o = b/2.

e Then, V(x) is given by

. 1 1
Viz) = —Eabwl sinxy — be%

e The term zysinzy >0, VO < |zy1| <.
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Example 4.4 - 6

Taking D = {z € R? | |z1| < 7},

we see that V(z) is positive definite and
V() is negative definite over D.

Thus, by Theorem 4.1, we conclude that
the origin is asymptotically stable.

The theorem’s conditions are
only sufficient.

Failure of a Lyapunov function candidate
does not mean that the equilibrium is
not stable or asymptotically stable.

It only means that such stability property
cannot be established
by using this Lyapunov function candidate.

Ch4.1-43

E
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Variable Gradient Method - 1 (§4.1): skip?

The variable gradient method:

A procedure that searchs for

a Lyapunov function

in @ backward manner.

That is, investigate an expression

for the derivative V(z) and

go back to choose the parameters of V(x)
so as to make V(z) negative definite.

To describe the procedure,
let V(x) be a scalar function of = and
g(z) =VV = (0v/ox)T.

The derivative V (x)
along the trajectories of (4.1) is given by

V(@) =2 @) = ¢ (@) ()

Ch4.1-44

©

Feng-Li Lian 2004 Nonlinear Systems Analysis




Variable Gradient Method - 2

e The idea now is to try to choose g(x)
such that it would be the gradient of
a positive definite function V(x) and,
at the same time,
V(z) would be negative definite.

e It is not difficult to verify that
(Exercise 4.5)
g(z) is the gradient of a scalar function
iff the Jacobian matrix [0g/0x] is
symmetric; that is,
dg; _ 995 . .
—— = Vi,j=1,..,
O:L‘j ox; " e T
e Under this constraint,
we start by choosing g(x)
such that ¢7(z) f(z) is negative definite.

Ch4.1-45

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Variable Gradient Method - 3

e The function V(x) is then computed
from the integral

V) = [ gTwdy

_
)

PRV N
Yi\Y ey

(1=

1

.
|

e The integration is taken over any path
joining the origin to .

e Usually, this is done along the axes,
that is,

T
V@) = [ g1(y1,0...0)dyy

x5
/O 92($17 Y2, 0,.., O)dyQ
_|_
Tn,
+ /(‘) gn($1:$2a~~~a$n—1ayn)dyn

Ch4.1-46
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Variable Gradient Method - 4 Ch4.1-47

e By leaving some parameters of g(x)
undetermined,
one would try to choose them

V(z) is positive definite.

VV(z) = g(z) = ? is symmetric
X

V(z) = g (2)f(2)

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 45-1 Ch4.1-48
e Example 4.5
Consider the second-order system

r1 = oo
:&2 = —h,(:{:]_) — aro
where a > 0,

h(-) is locally Lipschitz, h(0) =0, and
yh(y) > 0 for all y # 0,y € (—b,c)
for some positive constants b and c.

e The pendulum equation is a special case of
this system.
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Example 4.5 - 2

e To apply the variable gradient method,
we want to choose
a second-order vector g(z) that satisfies

991 _ 092
(9:62 0;[;1

V(x) = g1(x)za — g2(2)[h(z1) + az] <O,
for x # 0 and

Viz) = /Ow gT(y)dy >0, forz#0

e Let us try

y(x)z1 + 6(x)a)
where the scalar functions

a(-), (), ~(), and ()

are to be determined.

B 7N AT 1
al{x)xry + B{z)z
(w):{ (L)1 + P (L)x2

Ch4.1-49
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Example 4.5 - 3
e To satisfy the symmetry requirement,
we must have

(’T‘)-I-% 1+%’12

o)
= (@) + 51 +
dx1

e The derivative V(z) is given by

V(z) = a(z)rizs+ B(x)23 — ay(z)zizm
ad(x)x3 — §(x)wah(zy)
— y(z)xz1h(x1)

Ch4.1-50
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Example 4.5 -4 Ch4.1-51

e To cancel cross-product terms,
we choose

a(xz)r] — ay(x)xy — d(x)h(x1) =0

so that

V() = —[ad(z) — B(x)]23 — y(2)z1h(21)

e To simplify our choices,
let us take d(x) = 6 = constant,
v(x) =~ = constant, and
(3(x) = B = constant.

e Then, a(xz) depends only on 1,
and the symmetry requirement is satisfied
by choosing 3 = +.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Example 4.5 -5 Ch4.1-52

e The expression for g(x) reduces to

ayry + Sh(x1) + yro

9(w) = yr1 + 6o

e By integration, we obtain
V@ = [ e+ oGl
0
+/ (yz1 + dy2)dy2
0
1 - [ 1 4
= Ea'yxf +6/O h(y)dy + yz122 + 56175

1 @1
= EwTPx—l—é/ h{y)dy

6]
whereP:{aV 7}
_’y 5_

e Choosing d >0 and 0 <~ < ad
ensures that V(x) is positive definite and
V(z) is negative definite.
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Example 4.5 - 6 Ch4.1-53

e For example,
taking vy =akéd forO< k <1
yields the Lyapunov function

07 ka? ka T1
V(z) = 5% va 1 ] x + 5/0 h{y)dy
which satisfies conditions (4.2) and (4.4)
of Theorem 4.1 over the domain D,
D={xe€R?| —b<xz <c}.
e SO, the origin is asymptotically stable.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Region of Attraction - 1 (§4.1) Ch4.1-54

e Region of attraction
Region of asymptotic stability
Domain of attraction
Basin

e When the origin z =0 is
asymptotically stable,
we are often interested in determining
how far from the origin
the trajectory can be and
still converge to the origin
as t approaches oc.

e Let ¢(t; ) be the solution of (4.1)

that starts at initial state x at time t = 0.

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Region of Attraction - 2 Ch4.1-55
e Then, the region of attraction is defined

as the set of all points =

such that ¢(t; x) is defined for all t > 0

and lim; .o o(t; z) = 0.

e Finding the exact region of attraction
analytically might be difficult
or even impossible.

e However, Lyapunov functions can be used
to estimate the sets
contained in the region of attraction.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Region of Attraction - 3 Ch4.1-56

e From the proof of Theorem 4.1,
we see that
if there is a Lyapunov function
that satisfies the conditions of
asymptotic stability
over a domain D and,
if Qe ={xe€ R"|V(x) <c}
is bounded and contained in D,
then every trajectory starting in Q2.
remains in 2. and
approaches the origin as t — oc.

e Thus, 2. is an estimate of
the region of attraction.

e The estimate may be conservative,
that is, it may be much smaller than
the actual region of attraction.
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Region of Attraction - 4

e In Section 8.2, we will solve examples
on estimating the region of attraction and
see some ideas to enlarge the estimates.

e Here, we want to pursue another question:
Under what conditions
will the region of attraction be
the whole space R"?

Ch4.1-57
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Region of Attraction is R*n - 1

e The region of attraction be
the whole space R"7?

e For any initial state z,
the trajectory ¢(t; z) approaches the origin
as t — oo,

no matter how large ||z|| is.

e If an asymptotically stable E.P.
at the origin has this property,
it is said to be
globally asymptotically stable.

Ch4.1-58
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Region of Attraction is R*n - 2

From the proof of Theorem 4.1,
for the global asymptotic stability
if x € R" can be included

in the interior of a bounded set 2.
That is, D = R™;

but, is that enough?

The problem is that
for large ¢, the set Q2. need not be bounded.

For example, consider the function
2
L7

2
1+ 27

Vix) = + x%

Fig. 4.4 shows the surfaces V(z) = ¢
for various positive values of c.

Ch4.1-59

i

§

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Region of Attraction is R*n - 3

For small ¢,

the surface V(z) = ¢ is closed,;

hence, 2. is bounded

since it is contained in a closed ball B,
for some r > 0.

This is a consequence of
the continuity and positive definiteness of
Vix).

As c increases, a value is reached
after which

the surface V(z) = ¢ is open and
Q¢ is unbounded.

Ch4.1-60

>

)
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Radially Unbounded - 1

e For Q2. to be
in the interior of a ball By,
¢ must satisfy ¢ <inf >, V(z)

o If

I= lim inf V(z) <>

o0 faf|Zr

Then Q. will be bounded if ¢ < [.

e In the preceding example,
2
1

I = lim min { +:c2}
r=00 |gl|l=r |1 422 | 2|
2
. T
= lim 1 5 =1
|z1|—00 1 ‘|'353]_

e Thus, Q2. is bounded only for ¢ < 1.

Ch4.1-61
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Radially Unbounded - 2
e Thus, 2. is bounded only for ¢ < 1.

e An extra condition that ensures that
Q. is bounded for all values of ¢ > 0 is

V(x) — oo as ||z]] — o

e A function satisfying this condition
is said to be radially unbounded.

Ch4.1-62
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Globally Asymptotically Stable - 1 (§4.1) Ch4.1-63
e Barbashin-Krasovskii Theorem:
radial boundedness
for globally asymptotically stability.
e Theorem 4.2
e Let x =0 be an E.P. for (4.1).
e letV:R"—> R
be a continuously differentiable function
such that
V(0)=0and V(z) >0, Vz#0 (4.5)
l|z]| = 0o = V(z) = o (4.6)
V(z) <0,V #0 (4.7)
then x =0 is
globally asymptotically stable.
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Globally Asymptotically Stable - 2 Ch4.1-64

e Proof:
e Given any point p € R",
let ¢ =V (p).

e Condition (4.6) implies that
for any ¢ > 0, thereisr >0
such that
whenever ||z|| > r,

V(z) >c

[ ] ThuS, Q(‘_‘ C B-;',
which implies that €. is bounded.

e T he rest of the proof is similar to
that of Theorem 4.1.
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Example 46-1 Ch4.1-65
e Example 4.6
e Consider again the system of Example 4.5,

but this time, assume that

the condition yh(y) > 0

holds for all y #= 0.

e The Lyapunov function

6 7| ka? ka 1
V(x) —53: | ka1 ].’n-l—ﬁ]o h(y)dy

is positive definite for all =z € R2
and radially unbounded.

e [ he derivative

V(z) = —ad(1l — k)x% — adkxih(xzq)

is negative definite for all z € R? e Therefore, the origin is

since 0 <k <1. globally asymptotically stable.
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Example 4.6 - 2 Ch4.1-66

e If the origin z =0 is
a globally asymptotically stable E.P.
of a system,
then it must be the unique E.P.
of the system.

e For if there were another E.P. z,
the trajectory starting at
would remain at z, vVt > 0;
hence, it would not approach the origin,
which contradicts the claim that
the origin is globally asymptotically stable.

e Therefore, global asymptotic stability
is not studied
for multiple equilibria systems
like the pendulum equation.
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Instability Theorem - 1 (§41) Ch4.1-67
e letV:D— R be

a continuously differentiable function

on a domain D C R"

that contains the origin @ = 0.

e Suppose V(0) =0 and
there is a point zg arbitrarily close to '0’
such that V(zg) > 0.

e Chooser >0
such that the ball B, = {x € R" | ||z|| < r}
is contained in D, and let B 2! ¥ =¥

U={ze€Br|V(z)>0} (4.8)

e The set U is a nonempty set

contained in B;. 2 i
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Instability Theorem - 2 Ch4.1-68

e Its boundary is
the surface V(z) =0 and
the sphere ||z]| = r.

e Since V(0) =0,
the origin lies on the boundary of U
inside B.

e Notice that
U may contain more than one component.

e For example, Figure 4.5 shows the set U X
for V(z) = 3(a3 — 23). r 1

e The set U can be always constructed
provided that V(0) =0 and V(zg) >0
for some zg arbitrarily close to the origin. X=X
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Theorem 4.3: Chetaev’'s Theorem - 1

Proof:
The point zg is in the interior of U

and V(zg) =a > 0.

The trajectory z(t) starting at z(0) = zg
must leave the set U.

To see this point, notice that
as long as z(t) is inside U, V(z(t)) > a,
since V(z) >0€ U.

Since the continuous function V(z)
has a minimum over the compact set
{zx €U and V(z) > a} = {z € B, and V(z) > a}.

Let y =min{V(z) |z € U and V(z) > a}

Ch4.1-69
Chetaev’'s Theorem:
Theorem 4.3:
Let x = 0 be an E.P. for (4.1).
Let V:D — R be
a continuously differentiable function
such that
V(0) =0, and V(zg) > 0 for some zq
with arbitrarily small ||zg]|.
Define a set U as in (4.8) and
suppose that V(z) >0 in U.
Then, z = 0 is unstable.
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Theorem 4.3: Chetaev’s Theorem - 2 Ch4.1-70
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Theorem 4.3: Chetaev's Theorem - 3
e Then, v> 0 and

V@) = Vo) + [ V()ds
> at [ vds=a+to

e This inequality shows that
xz(t) cannot stay forever in U
because V(z) is bounded on U.

e Now, z(t) cannot leave U
through the surface V(z) =0
since V(z(t)) > a.

e Hence, it must leave U
through the sphere ||z|| = r.

Ch4.1-71

e Because this can happen
for an arbitrarily small ||zg]|,
the origin is unstable.
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Example 4.7 - 1

e Example 4.7:
e Consider the second-order system

ry = z1+ g91(x)

ry = —w2+ go(w)
where g1 2(-) are locally Lipschitz functions
that satisfy the inequalities

91 ()| < K||z||3,

lg2(2)| < Kll]|3

in a neighborhood D of the origin.

e T hese inequalities imply that
91(0) = g2(0) = 0.

e Hence, the origin is an E.P.

Ch4.1-72
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Example 4.7 - 2

Ch4.1-73
e Consider the function
1
V(@) =% - 23)
e On the line 2o =0, V(xz) > 0 at points
arbitrarily close to the origin.
e The set U is shown in Figure 4.5.
e The derivative of V(x)
along the trajectories of the system
is given by
V(z) = 21 + 23 + 2191(x) — 2292(2)
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Example 4.7 - 3 Ch4.1-74

e The magnitude of the term
2191 (x) — x29>(x) satisfies the inequality

>
lz191(x) — xoga(x)| < D || - |gi(2)]
i=1

3
< 2|23

e Hence,

V() 2 ||z|l5 — 2k||el13 = ||zl|5(1 — 2k]|z]|2)

e Choosing r such that
B, C D and r < 1/(2k),
it is seen that
all the conditions of Thm 4.3 are satisfied.

e Therefore, the origin is unstable.
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