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Continuous Dependence on Data - 1 (3.2) Ch3B-3

e Here, we discuss the dependence of
the solution of (3.1)
on the initial state xq,
and the RHS function f(t,z).

e Let y(t) be a solution of (3.1)
that starts at y(tg) = yo and
is defined on
the compact time interval [tg.t1].
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Continuous Dependence on Data - 2 Ch3B-4

e Dependence on zq:

® Bs(yo) = {x € R"| ||z — yol| < 6}

e Given € > 0, thereis 6 >0
such that
for all zg in Bs(yo),
# = f(t,z) has a unique solution z(t)
defined on [tg,t1],
with 2(tg) = zg, and
satisfies ||z(t) —y(t)|| < e
for all t € [tg,t1].

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Continuous Dependence on Data - 3

e Dependence on f(t,x):

e Assume that f depends continuously on a
set of constant parameters; that is,
f = f(t.z,\), where \ € RP.

e Let z(t, \g) be a solution of z = f(t,z, \g)
defined on [tg, t1], with z(tg, A\g) = z0.

e The solution is said to
depend continuously on A
if for any e > 0, thereis § >0
such that
for all A in Bs(Ag),
z = f(t,z,\) has a unique solution z(t, \)
defined on [tg,t1], with z(tg,\) = zg, and
satisfies ||x(t, \) — z(t, \g)|| < €
for all t € [tg,t1].

Ch3B-5
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Gronwall-Bellman Inequality - 1 (App. A, page 651)

e Lemma A.l:
(Gronwall-Bellman Inequality)

e Let \: [a,b] — R be continuous and
i [a,b] — R be cont. and nonnegative.

e If a continuous function
y . [a,b] — R satisfies

i
y(t) < A(t) + ] u(s)y(s)ds

fora<t<hb,
then on the same interval

y(t) < A(t) + /: A(s)pu(s) epr; p(r)dr] g

Ch3B-6
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Gronwall-Bellman Inequality - 2 Ch3B-7

e In particular,
if A(t) = X\ is a constant, then

o(t) < Aexol [ u(r)ir]

e If, in addition,
u(t) = p > 0 is a constant, then

y(t) < Aexp[u(t — a)]
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Closeness of Solutions - 1 (3.2) Ch3B-8
e Theorem 3.4:

o Let f(t,z) be
piecewise continuous in t and
Lipschitz in = on [tg,t1] x W
with a Lipschitz constant L,
where W C R™ is an open connected set.

e Let y(t) and z(t) be solutions of
y = f(t.y), y(to) = vo
and

2= f(t,2) + g(t.2), 2(to) = 20
such that y(t),z(t) € W for all t € [tg,t1].
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Closeness of Solutions - 2 Ch3B-9
e Suppose that
lgCt, 2)|| < p, V(t,z) € [to, t1] x W
for some p > 0.
e Then, Vt € [tg, t1]
ly(®) — 2| < lyo — 2ol expl-(—t0)]
[l [L(t—t0)] _
+ I {exp 1}
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Closeness of Solutions - 3 Ch3B-10

e Proof:

e The solutions y(t) and z(t) are given by
u(t) = yo+ / £(s,y(s))ds
() = 0+ / [£ (s, 2(5)) + (s, 2(s))]ds

e Substracting the two equations
and taking norms vyield

ly(®) — 2O < [lyo — 2ol
+ [5G
~ (s, 2(s)]|ds
NGO
< ’Y‘|‘;f(t—to)
+ /tOLHy(S)—Z(s)Hds

where v = [|lyo — zo|.

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Closeness of Solutions - 4

Ch3B-11
e By the Gronwall-Bellman inequality
(Lemma A.1)
the function ||y(t) — z(t)|| results in
[y(t) —z(®)|] < v+ p(t—to)
t
+ [ L+ uGs — to)]
Jlo
exp[L(t — s)]ds
e Integrating the RHS by parts, we obtain
lly(t) =z < v+ wu(t—to)
— v — u(t —to)
+ etxp[L(t —to)]
+ / pexp[L(t — s)]ds
o
= yexp[L(t —to)]
+ F{explL(t — t0)] - 1}
which completes the proof of the theorem.
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Dependence on Initial States & Parameters - 1 (3.2) Ch3B-12

e T heorem 3.5:

e Let f(t.z,\) be
continuous in (¢,z,\) and
locally Lipschitz in =z (uniformly in ¢ and \)
on [to, t1] x D x {||A = Aol| < ¢}
where D C R™ is an open connected set.

e Let y(t,\g) be a solution of & = f(t,z, \g)
with y(tg, A\o) = yo € D.

e Suppose y(t,A\g) is defined and
belongs to D for all t € [tg,t1].
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Dependence on Initial States & Parameters - 2 Ch3B-13
e Then, given € > 0, thereis § > 0
such that if
l|z0 — yoll <6 and [[A = Agl| < ¢

then there is a unique solution z(t, \)
of © = f(t,xz, \)

defined on [tg, t1], with z(tg,\) = zq,
and z(t, \) satisfies

||z(t'/\) - U(t )‘0)” < €, vVt € [tortl]
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Dependence on Initial States & Parameters - 3 Ch3B-14
e Proof:

e By continuity of y(t, \g) in t and
the compactness of [tg, 1],
y(t, \g) is bounded on [tg, t1].

e Define a "tube” U around the solution
y(t, Ao) by

U={(z) € [to.t1] x R" | [[z — y(t, Ao)|| < €}

e Suppose that U C [tg,t1] x D;
if not, replace e by €1 <€
that is smaller enough to ensure that
U C [tg,t1] x D and
continue the proof with €.
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Dependence on Initial States & Parameters - 4 Ch3B-15

e The set U is compact;
hence, f(t,z,\) is Lipschitz in z on U
with a Lipschitz constant, says, L.

e By continiuity of f in A
for any a > 0,
there is B > 0 (with 8 < ¢)
such that

”f(tif, A) - f(t,.L /\D)H <,

V(t,z) € UV = Aol <8

e Take a < e and ||zg — yol| < a.
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Dependence on Initial States & Parameters - 5 Ch3B-16

e By the local existence and uniqueness thm,
there is a unique solution z(t, \)
on some time interval [tg,tg + A].

e The solution starts insdie the tube U,
and as long as it remains in the tube,
it can be extended.

e By choosing a small enough «,
the solution remains in U for all t € [tg,t1].

e In particular,
we let 7 be the first time
the solution leaves the tube and
show that we can make 7 > ¢1.
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Dependence on Initial States & Parameters - 6

e On the time interval [tg, 7],
the conditions of Thm 3.4 are satisfied

with u = a.

e Hence,
2(t, \) — y(t, Ao)|| < aexplEt—tl
o
—|— E{exp[L(t*to)] _1}

|
< al+3) explL(t—o)]

e Choosing o < eLexpl~L(ti—t0)] /(1 4 L)
ensures that the solution z(t, \)
cannot leave the tube
during the interval [tg,%1].

Ch3B-17
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Dependence on Initial States & Parameters - 7

e Therefore, z(t,A) is defined on [tg,t1] and
satisfies ||z(t, \) — y(t, \o)|| < e.

e Take 6 = min{«a, 8} completes the proof of
the theorem.

e QED

Ch3B-18
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Differentiability of Solutions - 1 (3.3)
e Suppose that

f(t,xz, \) is continuous in (t,xz,\) and

has continuous first partial derivatives

wrt = and A

for all (t,z,)\) € [tg,t1] x R™ x RP.

e Let \o be a nominal value of A, and
suppose that
the nominal state equation & = f(t,z, \g),
with z(tg) = zg
has a unique solution x(t, \g) over [tg,t1].

e From Thm 3.5,
for all A sufficiently close to Ag,
that is, ||A — A\g|| sufficiently small,
= f(t,z, ), with z(tg) = zo
has a unique solution x(t,\) over [tg, t1]
that is close to the nominal solution z(t, \g).

Ch3B-19
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Differentiability of Solutions - 2

e The continuous differentiability of f
wrt x, A
implies the additional property that
the solution z(t, \) is differentiable
wrt A near Ag.

e T0 see that, write

t
z(t,\) =29+ ﬁo f(s,z(s, ), N)ds

e Take partial derivatives wrt X vields

oz (t, \)
AN

R'J\(ts’\) =
= [ {?(9?(9, A), Naa(s, A)
Ji, LOT

+ g(s?:v(s, M), A) | ds

Ch3B-20

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Differentiability of Solutions - 3 Ch3B-21
e Differentiating wrt ¢,
it can be seen that z,(t, \) satisfies
e}
a:z.-,\(t,,x) = A(t,Nax(t,\) + B(t, \)
zz(to,\) =0 (3.4)
diL’ r=x(t.\)
af(t,x, )
B(t,\) = —1 "2
A r=xz(t,N)
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Sensitivity Equation - 1 (3.3) Ch3B-22

e For )\ sufficiently close to Ag,
the matrices A(t,\) and B(t,\) are
defined on [tg, t1].
Hence, z)(t,\) is defined
on the same interval.

o At A=)\,
the RHS of (3.4) depends only on
the nominal solution z(¢, Ag).

o Let S(t) = z)(t, \g);
then S(t) is the unique solution of

S = A(t,\g)S(t) + B(t,\g),S(tg) = 0 (3.5)

e S(t) is called the sensitivity function, and
(3.5) is called the sensitivity equation.
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e Procedure for calculating S(t):
— Solve the nominal state equation for the
nominal solution z(t, A\g)

— Evaluate the Jacobian matrices

af(t,x, A

‘4({_!)\0) = %‘
€T =zt ), A=Ag

af(t,z,\)

B(t,Ao) = — 1 —
OA a=x(t, ), A=MAg

— Solve the sensitivity equation (3.5) for
S(t).

e Alternative approach for calculating S(t):

x = f(t,z,Xo), z(to) = o,
5§ = [(’3_,"((.1 x, )\)} g4 {8}'(!,._ x, )\)}
ox A=A aA A=
S(tg) =0

which is solved numerically.

Sensitivity Equation - 2 Ch3B-23
e Sensitivity functions provide
first-order estimates of the effect of
parameter variations on solutions.
e For small ||A — Mg,
xz(t,\) can be expanded in a Taylor series
about the nominal solution z(t, Ag):
z(t,A) = z(t, Ao) + S()(A — Ag) + HOT
Or, z(t,\) ~ z(t,\g) + S(t)(A — Xg)
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Sensitivity Equation - 3 Ch3B-24
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Comparison Principle - 1 (3.4) Ch3B-25

e Sometimes we only want to compute
the bounds of z(t) without solving it.

e The Gronwall-Bellman Inequality is a tool.
Another tool is the comparison lemma.

e Consider a differential inequality

o(t) < f(t,0(t))

and a differential equation

a(t) = £, u(t)).
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Comparison Principle - 2 Ch3B-26
e And two facts:
— If v(¢) is differentiable at ¢,
then Dtu(t) = 0(t).

— If Ho(t + h) —v(t)| < g(t, h), Yh € (0,b]

and lim, o+ g(t,h) = go(t)
then DFou(t) < go(t).

The limit h — 0T means that
h approaches zero from above.

upper RH derivative:

DTu(t) = lim sup vt +h) —v@®)
h—0+ h
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Comparison Principle - 3 Ch3B-27
e Lemma 3.4: (Comparison Lemma)
e Consider uw = f(t,u), u(tg) = ug
where f(t,u) is
continuous in t and
locally Lipschitz in u,
for all we J C R.
e Let [tg,T) (T could be infinity)
be the maximal interval of existence
of the solution w(t),
and suppose u(t) € J for all t € [tg,T).
e Let v(t) be a continuous function
whose upper RH derivative DT u(t)
satisfies the differential inequality
DFo(t) < f(t,v(t)), v(to) < uo
with v(t) € J for all t € [tg,T).
Then, v(t) < u(t) for all t € [tg,T).
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Example 38-1 (34) Ch3B-28

e Example 3.8:
e Consider the scalar D.E.
i=f(z) = —(14+22), z(0) =a

has a unique solution on [0,t1),
for some t; > 0O,
because f(x) is local Lipschitz.

o Let v(t) = z2(¢).

e v(t) is differentiable and
its derivative is given by

b= 2x(t)z(t) = —222(t) — 224 () < —222(¢)

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Example 3.8 - 2

e Hence,
v(t) satisfies the differential inequality

o(t) < —2v(t), v(0) = a?

e Let u(t) be the solution of the D.E.
= —2u, uw(0) = a2,

= u(t) = a%e 2

e Then, by the comparison lemma,
the solution x(t) is defined for all t > QO
and satisfies

()] = \Jo(t) < e Yal, V¢ >0

Ch3B-29
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