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Introduction - 1 Ch3A-3

¢ Fundamental properties of the solutions of
ODEs:
existence,
unigqueness,
continuous dependence on initial conditions
and continuous dependence on parameters.

e Starting an experiment at g,
we expect the system will move and
its states will be defined at ¢ > {p.

e With a deterministic system,
we expect that
we can repeat the experiment exactly,
i.e. get same motion and same state
at t > to.
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Introduction - 2 Ch3A-4

e To obtain this prediction,
the initial-value problem
T = f(t "C) ~[’(t0) =0
must have a unique solution.

e The existence and uniqueness
can be ensured
by imposing some constraints on f(t,x).

e The key constraint is
the Lipschitz condition:
1f(tz) — f(t, )|l < Ll|lz — yl|
for all (¢,z) and (¢,y)
in some neighborhood of (tg,xp).
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Introduction - 3 Ch3A-5

e An essential factor in the validity of any
math model is the continuous dependence
of its solutions on the data of the problem.

e The data are
the initial state zq,
the initial time tg, and
the f(t,x).

e Arbitrarily small errors in the data will not
result in large errors in the solutions.
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Introduction - 4 Ch3A-6

e Sensitivity equations
to describe the effect
of small parameter variations
on the performance of the system.

e Comparison principle
to bound the solution
of a scalar differential inequality
v < f(t,v)
by the solution of @ = f(t,u).
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Banach Space - 1 (App. B; page 653)
e Linear Vector Spaces:

e A linear vector space x over the field R
is a set of elements x,y, z, ... called vectors

such that for any two vectors =,y € x

e the sum z 4 y is defined,
-z +yEXx,
-zty=y+z

-ty =2+ (W+2),

e and there is zero vector 0 € x

- such that 4+ 0 =« for all z € x.

Ch3A-7
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Banach Space - 2

e For any numbers o, € R,
the scalar multiplication ax is defined,

- ar € X,
-1-z=u=,
-0.-2=0,

(af)z = aBz),
- alz+y) = az+ ay, and

- (a4 B)r = azx+ Bz, for all z,y € .

Ch3A-8
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Banach Space - 3 Ch3A-9

e Normed Linear Spaces:

e A linear space x is a normed linear space
if, to each vector z € ¥,
there is a real-valued norm |[|z||
that satisfies:

||z|| > 0 for all x € x, with ||z|| = 0 iff x = 0.

|z + yll < [l=][ +lyl| for all 2,y € x.

o |lax|| = |a| ||z]|| for all « € R and z € x.
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Banach Space - 4 Ch3A-10

e Convergence:

A sequence {z;.} € x, a normed linear space,
converges to = € x
if ||z —x|| = 0 as k — oc.

e Closed Set:

e A set SC x is closed
iff every convergent sequence
with elements in S has its limit in S.

Cauchy Sequence:

A sequence {z} € x is said to be
a Cauchy sequence

if ||$h - »’ITmH — 0 as k,m — oco.
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Banach Space - 5

Ch3A-11
e Banach Space:
e A normed linear space x is complete
if every Cauchy sequence in y
converges to a vector in y.
e A complete normed linear space is
a Banach space.
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Contraction Mapping Theorem - 1 (App. B; page 655) Ch3A-12

e Theorem B.1 (Contraction Mapping):

e Let S be a closed subset of
a Banach space y and
let T" be a mapping that maps S into S.

e Suppose that
[|T'(x) — T ()| < pllz —yll,

Ve,ye S,0<p<1

then

— there exists a unique vector z* € S
satisfying =* = T'(z™*).

— x* can be obtained by the method
of successive approximation,
starting from any arbitrary initial vector
in S.
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Contraction Mapping Theorem - 2 Ch3A-13

e Proof:

e Select an arbitrary z1 € S and
define the sequence {z} by x4 = T'(x).
Since 7" maps S into S, =, € S, Vk > 1.

e Show that {x;} is Cauchy:

We have
zi+1 — el = |[T(xr) — T(xi-1)l|
< pllwe — 21|
< pPllek1 — @ |
<
< P — @
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Contraction Mapping Theorem - 3 Ch3A-14

e It follows that

llzhtr —zill < N@pyr — Bpgr—al]
FZpgr—1 — Togr2l| + -

241 — x|

(A

[pk;—l—'r'72 +pk;—|—7‘73+ +plcfl]
l|x2 — 21]|

o0
PN g — 2|
=0

IA

k—1

= 72—l

The RHS tends to zero as k — oc.
Thus, the sequence is Cauchy. e Because y is a Banach space,

xp — a* € x as k — oo.

e Moreover, since S is closed, z* € S.
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Contraction Mapping Theorem - 4

Ch3A-15
e Show that z* = T'(z*):
e For any z;, = T'(x,_1), we have
lz" =T < [la" — @] + [l — T(@")]
< e — ]| + pllze—1 — 27|
By choosing k large enough,
the RHS can be made arbitrarily small.
Thus, ||z* —T(z*)|| =0, i.e., " =T(z*).
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Contraction Mapping Theorem - 5 Ch3A-16

e Show that z* is the unique fixed point of
T in S.

e Suppose that z* and y* are fixed points.
Then,

z* =yt = |IT (") = THI < pllz™ =y

o on o1 win havia ¥ — o %
||\.-CP“‘-., 4, VvwWT 11Aavc .1 —y M

e QED.

e 1" maps S into S.

e ' is a contraction mapping over S.
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Existence and Uniqueness (3.1) Ch3A-17
e Sufficient conditions

for the existence and uniqueness

of the solution

of the initial-value problem (3.1).

e A solution of (3.1) over the interval [tg.t1],
a continuous function z : [tg,t1] — R"
such that
z(t) is defined and
z = f(t,z(t)) for all t € [tp,t1].

e If f(¢,2) is continuous in t and =z,
then the solution z(t) will be
continuously differentiable.

e If f(t,z) is continuous in z,
but only piecewise continuous in ¢,
then a solution z(t) could only be
piecewise continuously differentiable.
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Local Existence and Uniqueness - 1 (3.1) Ch3A-18

e A ball: By(xzg) = {.L € R"

o — aoll < v}

e Theorem 3.1
(Local Existence and Uniqueness)
Let f(t,z) be piecewise continuous in ¢
and satisfy the Lipschitz condition

I|f(t,z) = f(t, || < Lz - yl|

Va,y € Br(xg),Vt € [to,t1].

Then, there exists some 6§ > 0

such that z = f(t.z) with z(tg) = zo
has a unique solution over [tg,tg + d].
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Local Existence and Uniqueness - 2

e Proof:
e First, z(t) satisfies both the following eqns:

T = f(tax)a ‘T(tO) = Zg (Cl)

t
2(t) = o —I—/tof(s,:r(s))ds (C.2)

= z(t) = (Tz)(¢)

So, we will focus on the discussion of the
2nd one.

e View its RHS as a mapping of the
continuous function z : [tg,t1] — R",
Denote it by (T'z)(¢),

Write it as z(t) = (Tz)(t)

Note that (7T'z)(t) is continuous in t.
A solution of it is a fixed point of the
mapping T that maps z into Tz.

Ch3A-19
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Local Existence and Uniqueness - 3

e Existence of a fixed pint can be established
by using the contraction mapping theorem.
We need to define a Banach space y
and a closed set S C x
such that 7" maps S into S
and is a contraction over S.

e Let x = Cltg.to + 6], (set of all cont. fun)
with norm |[[z||c = max,c(y 1o+0 12D
and S ={z € x| |[z —zollc <}

e \We restrict the choice of §
to satisfy 6 <t1 — 1
so that [tg,tg + 6] C [to.t1].

Ch3A-20
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Local Existence and Uniqueness - 4

e Notice that ||z(t)|| dentoes a norm on R",
while ||z||~ denotes a norm on y.

e Also, B is a ball in R",
while S is a ball in x.

e By definition, 7" maps x into x.

e To show that 7" maps S into S, write

(Tx)(t) —z0 = /'f(s,x(s))ds
to
t
= / [£(s,2(5)) — £(s,20)

+7 (s, o)]ds

Ch3A-21
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Local Existence and Uniqueness - 5

e By piecewise continuity of f,
we know that f(t,zg) is bounded on [tg,t1].

e Using the Lipschitz condition and
the fact that for each z € S,
||lx(t) — xg|] < 7, Vt € [tg,to + 8], we obtain

1@ =woll < [ [5G = 100l

t

1 (s, 20)]l | ds
< / [Ll2(s) — wo]| + h] ds

t
< J/ (Lr + h)ds

to
= (¢ —to)(Lr+h)

< §r+h)

Ch3A-22
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Local Existence and Uniqueness - 6 Ch3A-23
e And

Tz —xollc = max |[|(Tx)(t) — xo
te[to.to+4]

IA

S(Lr+h) <r

e Hence, choosing § < r/(Lr + h)
ensures that T maps S into S.

e To show that
T is a contraction mapping over S:
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Local Existence and Uniqueness - 7 Ch3A-24

e Let x,y €S, consider
I[(Tz)(t) — (Ty)D|

= H [t[f(s,m(s)) - f(s,y(s))]ds”
[l

1o

t
< (s, m(s) — f(s,9(s))]|ds
to

IN

/t Lla(s) — y(s)|ds

0

t
/ dsLl|z — yllc
to

IA

e Therefore, for 6 < 7,

1Tz = Tyllc < Léllz —yllc < pllz —yllc

e Choosing p <1 and ¢ < p/L ensures that
1" is a contraction mappint over S.
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Local Existence and Uniqueness - 8 Ch3A-25

e By the contraction mapping theorem,
we can conclude that
if 4 is chosen to satisfy

. T P
5<m|n{t — 10, .—} for p<1
= L= T P
then (C.2) will have

a unique solution in S.

e Qur final goad is to establish
unigueness of the solution
among all continuous functions z(t),
that is, uniqueness in y.

e It turns out that
any solution of (C.2) in x will lie in S.
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Local Existence and Uniqueness - 9 Ch3A-26
e Note that

since z(tg) = zq is inside the ball B,
any continuous solution x(t) must
lie inside B for some interval of time.

e Suppose that
z(t) leaves the ball B and
let tg + p be the first time
xz(t) intersects the boundary of B.
Then, ||z(tg + 1) — xgl| = 7.

e On the other hand, for all t < tg + pu,

11
o) ~soll < [ [IfGsa() ~ 1a0)]

IA

/tt [LH:c(s) — zol| + h} ds

t
(Lr + h)ds

o

IA
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Local Existence and Uniqueness - 10 Ch3A-27
e Therefore,
r = |lz(to + p) — xol| < (Lr + h)p
r
> >
THZ RS0
e Hence,
the solution z(t) cannot leave the set B
within the time interval [tg.tg + J],
which implies that
any solution in x lies in S.
e Consequently,
uniqueness of the solution in S
implies uniqueness in y.
e QED
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LipSChitZ inx-1 (31) Ch3A-28

e A function is Lipschitz in =

e Lipschitz constant: L

e Local Lipschitz:
A function f(x) is said to be
local Lipschitz on a domain
(open and connected set) D C R™
if each point of D has a neighborhood Dg
such that
f satisfies the Lipschitz condition (3.2)
for all points in Dg
with some Lipschitz constant Lg.
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Lipschitz in x - 2 Ch3A-29

e A local Lipschitz function on a domain D
is not necessarily Lipschitz on D,
since the Lipschitz condition may not hold
uniformly (with the same constant L)
for all points in D.

e A local Lipschitz function on a domain D
is Lipschitz on every compact
(cloesed and bounded) subset of D.

e A function f(x) is said to be
globally Lipschitz
if it is Lipschitz on R™.

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Lipschitz Property & Continuity - 1 (3.1) Ch3A-30

e The following lemma shows
how a Lipschitz constant can be calculated
using knowledge of [0f/0x].

e Lemma 3.1

e Let f:[a,b] x D— R™
be continuous for some domain D C R".

e Suppose that
[0f /0x] exists and
is continuous on [a,b] x D.

e For a convex subset W C D,
if there is a constant L > 0 such that

of

—(t, < L

||8$( o) <
on [a,b] x W, then

|| f(t,z) = f(t, )| < Lllz —y|

for all t € [a,b],z,y € W.
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e The following lemma shows that
the Lipschitz property is weaker
than continuous differentiability.

Lemma 3.2

If f(¢t,z) and [0f/0x](t,x) are continuous
on [a,b] x D, for some domain D C R",
then f is local Lipschitz in z on [a.b] x D.

Lemma 3.3

If f(t,x) and [0f/0x](t,z) are continuous
on [a,b] x R",

then f is globally Lipschitz in z on [a, b] x R™
iff [0f/0x] is uniformly bounded

on [a,b] x R™.

Lipschitz Property & Continuity - 2 Ch3A-31
e The Lipschitz property is stronger

than continuity.
e If f(z) is Lipschitz on W,

then it is uniformly continuous on W

(Exercise 3.20).

The converse is not true.
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Lipschitz Property & Continuity - 3 Ch3A-32
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Global Existence and Uniqueness - 1 (3.1)

Theorem 3.2
(Global Existence and Uniqueness)
Suppose that
f(t,x) is piecewise continuous in ¢
and satisfies

1f (@) — f@& Il < Lz -yl

Va,y € RVt € [to, t1].

Then, the state equation =z = f(¢,z),
with z(tg) = g,

has a unique solution over [tg.t1].

Ch3A-33
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Global Existence and Uniqueness - 2

e Local Lipschitz property of a function is
basically a smoothness requirement.

It is implied by continuous differentiability.
Except for discontinuous nonlinearities,

it is reasonable to expect models

of physical sysems

to have locally Lipschitz RHS functions.

Global Lipshitz property is restrictive.

The following theorem shows that

global existence and uniqueness only needs
the local Lipschitz property of f

at the expense of having to know

more about the solution of the system.

Ch3A-34
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Global Existence and Uniqueness - 3

e Theorem 3.3
(Global Existence and Uniqueness)

e Let f(t,z) be piecewise continuous in ¢
and local Lipschitz in z
for all t > tg and all z in @ domain D C R".

e Let W be a compact subset of D, zg € W,
and suppose it is known that
every solution of z = f(t,z), z(tg) = x¢
lies entirely in W.

e Then, there is a unique solution
that is defined for all ¢ > tg.

Ch3A-35
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