Nonlinear Systems Analysis

Lecture 5

Appendix B & Section 3.1 Contraction Mapping Theorem + Existence & Uniqueness

Feng-Li Lian NTU-EE Sep04 – Jan05

Outline Ch3A-2

- Introduction (L5)
- Banach Space (L5)
- Contraction Mapping Theorem (L5)
- Existence and Uniqueness (L6)
- Continuous Dependence on Initial Conditions and Parameters (L6)
- Differentiability of Solutions and Sensitivity Equations (L7)
- Comparison Principle (L7)

© Feng-Li Lian 2004

Introduction - 1

Ch3A-3

 Fundamental properties of the solutions of ODEs:

existence, uniqueness, continuous dependence on initial conditions and continuous dependence on parameters.

- Starting an experiment at t₀,
 we expect the system will move and
 its states will be defined at t > t₀.
- With a deterministic system,
 we expect that
 we can repeat the experiment exactly,
 i.e. get same motion and same state
 at t > t₀.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Introduction - 2 Ch3A-4

- To obtain this prediction, the initial-value problem $\dot{x} = f(t,x), \ x(t_0) = x_0$ must have a unique solution.
- The existence and uniqueness
 can be ensured
 by imposing some constraints on f(t,x).
- The key constraint is the Lipschitz condition: $||f(t,x)-f(t,y)|| \leq L||x-y||$ for all (t,x) and (t,y) in some neighborhood of (t_0,x_0) .

Introduction - 3 Ch3A-5

- An essential factor in the validity of any math model is the continuous dependence of its solutions on the data of the problem.
- The data are the initial state x_0 , the initial time t_0 , and the f(t,x).
- Arbitrarily small errors in the data will not result in large errors in the solutions.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Introduction - 4 Ch3A-6

- Sensitivity equations
 to describe the effect
 of small parameter variations
 on the performance of the system.
- Comparison principle to bound the solution of a scalar differential inequality $\dot{v} \leq f(t,v)$ by the solution of $\dot{u}=f(t,u)$.

Banach Space - 1 (App. B; page 653)

Ch3A-7

- Linear Vector Spaces:
- A linear vector space χ over the field R is a set of elements x,y,z,... called vectors such that for any two vectors $x,y\in\chi$
- ullet the sum x+y is defined,
 - $-x+y\in\chi$,
 - -x+y=y+x,
 - -(x+y)+z=x+(y+z),
- and there is zero vector $0 \in \chi$
 - such that x + 0 = x for all $x \in \chi$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Banach Space - 2

- For any numbers $\alpha, \beta \in R$, the scalar multiplication αx is defined,
 - $\alpha x \in \chi$,
 - $-1 \cdot x = x$
 - $-0 \cdot x = 0$
 - $(\alpha\beta)x = \alpha(\beta x)$,
 - $-\alpha(x+y)=\alpha x+\alpha y$, and
 - $(\alpha + \beta)x = \alpha x + \beta x$, for all $x, y \in \chi$.

Banach Space - 3

Ch3A-9

- Normed Linear Spaces:
- A linear space χ is a normed linear space
 if, to each vector x ∈ χ,
 there is a real-valued norm ||x||
 that satisfies:
- $||x|| \ge 0$ for all $x \in \chi$, with ||x|| = 0 iff x = 0.
- $| \bullet | | |x + y| | \le ||x|| + ||y|| \text{ for all } x, y \in \chi.$
- $ig|ullet ||lpha x|| = |lpha| \, ||x|| \, ext{ for all } lpha \in R \, ext{ and } x \in \chi.$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Banach Space - 4

- Convergence:
- A sequence $\{x_k\} \in \chi$, a normed linear space, converges to $x \in \chi$ if $||x_k x|| \to 0$ as $k \to \infty$.
- Closed Set:
- A set S ⊂ χ is closed
 iff every convergent sequence
 with elements in S has its limit in S.
- Cauchy Sequence:
- A sequence $\{x_k\} \in \chi$ is said to be a Cauchy sequence if $||x_k x_m|| \to 0$ as $k, m \to \infty$.

Banach Space - 5

Ch3A-11

- Banach Space:
- A normed linear space χ is complete if every Cauchy sequence in χ converges to a vector in χ .
- A complete normed linear space is a Banach space.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Contraction Mapping Theorem - 1 (App. B; page 655)

Ch3A-12

- Theorem B.1 (Contraction Mapping):
- Let S be a closed subset of a Banach space χ and let T be a mapping that maps S into S.
- Suppose that

$$||T(x) - T(y)|| \le \rho ||x - y||,$$

$$\forall x, y \in S, 0 \le \rho < 1$$

then

- there exists a unique vector $x^* \in S$ satisfying $x^* = T(x^*)$.
- $-x^*$ can be obtained by the method of successive approximation, starting from any arbitrary initial vector in S.

© Feng-Li Lian 2004

Contraction Mapping Theorem - 2

Ch3A-13

- Proof:
- Select an arbitrary $x_1 \in S$ and define the sequence $\{x_k\}$ by $x_{k+1} = T(x_k)$. Since T maps S into S, $x_k \in S$, $\forall k \geq 1$.
- Show that $\{x_k\}$ is Cauchy:

We have

$$||x_{k+1} - x_k|| = ||T(x_k) - T(x_{k-1})||$$

$$\leq \rho ||x_k - x_{k-1}||$$

$$\leq \rho^2 ||x_{k-1} - x_{k-2}||$$

$$\leq \dots$$

$$\leq \rho^{k-1} ||x_2 - x_1||$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Contraction Mapping Theorem - 3

Ch3A-14

It follows that

$$\begin{aligned} ||x_{k+r} - x_k|| & \leq ||x_{k+r} - x_{k+r-1}|| \\ & + ||x_{k+r-1} - x_{k+r-2}|| + \dots \\ & + ||x_{k+1} - x_k|| \\ & \leq [\rho^{k+r-2} + \rho^{k+r-3} + \dots + \rho^{k-1}] \\ & ||x_2 - x_1|| \\ & \leq \rho^{k-1} \sum_{i=0}^{\infty} \rho^i ||x_2 - x_1|| \\ & = \frac{\rho^{k-1}}{1-\rho} ||x_2 - x_1|| \end{aligned}$$

The RHS tends to zero as $k \to \infty$.

Thus, the sequence is Cauchy.

- Because χ is a Banach space, $x_k \to x^* \in \chi$ as $k \to \infty$.
- Moreover, since S is closed, $x^* \in S$.

© Feng-Li Lian 2004

Contraction Mapping Theorem - 4

Ch3A-15

- Show that $x^* = T(x^*)$:
- For any $x_k = T(x_{k-1})$, we have

$$||x^* - T(x^*)|| \le ||x^* - x_k|| + ||x_k - T(x^*)||$$

 $\le ||x^* - x_k|| + \rho||x_{k-1} - x^*||$

By choosing k large enough, the RHS can be made arbitrarily small.

Thus, $||x^* - T(x^*)|| = 0$, i.e., $x^* = T(x^*)$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Contraction Mapping Theorem - 5

- Show that x* is the unique fixed point of T in S.
- Suppose that x^* and y^* are fixed points. Then,

$$||x^*-y^*|| = ||T(x^*)-T(y^*)|| \leq \rho ||x^*-y^*||$$
 Since $\rho < 1$, we have $x^* = y^*$.

- QED.
- T maps S into S.
- ullet T is a contraction mapping over S.

Existence and Uniqueness (3.1)

Ch3A-17

 Sufficient conditions for the existence and uniqueness of the solution of the initial-value problem (3.1).

- A solution of (3.1) over the interval $[t_0,t_1]$, a continuous function $x:[t_0,t_1]\to R^n$ such that $\dot{x}(t)$ is defined and $\dot{x}=f(t,x(t))$ for all $t\in[t_0,t_1]$.
- If f(t,x) is continuous in t and x, then the solution x(t) will be continuously differentiable.
- If f(t,x) is continuous in x,
 but only piecewise continuous in t,
 then a solution x(t) could only be
 piecewise continuously differentiable.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Local Existence and Uniqueness - 1 (3.1)

Ch3A-18

- A ball: $B_r(x_0) = \left\{ x \in R^n \mid ||x x_0|| \le r \right\}$
- Theorem 3.1

(Local Existence and Uniqueness)

Let f(t,x) be piecewise continuous in t and satisfy the Lipschitz condition

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

 $\forall x, y \in B_r(x_0), \forall t \in [t_0, t_1].$

Then, there exists some $\delta > 0$

such that $\dot{x} = f(t,x)$ with $x(t_0) = x_0$

has a unique solution over $[t_0, t_0 + \delta]$.

Ch3A-19

- Proof:
- First, x(t) satisfies both the following eqns:

$$\dot{x} = f(t, x), \ x(t_0) = x_0 \ (C.1)$$

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$
 (C.2)

$$\Rightarrow x(t) = (Tx)(t)$$

So, we will focus on the discussion of the 2nd one.

- View its RHS as a mapping of the continuous function $x:[t_0,t_1]\to R^n$, Denote it by (Tx)(t), Write it as x(t) = (Tx)(t)

Note that (Tx)(t) is continuous in t.

A solution of it is a fixed point of the mapping T that maps x into Tx.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Local Existence and Uniqueness - 3

- Existence of a fixed pint can be established by using the contraction mapping theorem. We need to define a Banach space χ and a closed set $S \subset \chi$ such that T maps S into Sand is a contraction over S.
- Let $\chi = C[t_0, t_0 + \delta]$, (set of all cont. fun) with norm $||x||_C = \max_{t \in [t_0, t_0 + \delta]} ||x(t)||$ and $S = \{x \in \chi \mid ||x - x_0||_C \le r\}$
- ullet We restrict the choice of δ to satisfy $\delta \leq t_1 - t_0$ so that $[t_0, t_0 + \delta] \subset [t_0, t_1]$.

Ch3A-21

• Notice that ||x(t)|| dentoes a norm on \mathbb{R}^n , while $||x||_C$ denotes a norm on χ .

- Also, B is a ball in R^n , while S is a ball in χ .
- By definition, T maps χ into χ .
- \bullet To show that T maps S into S, write

$$(Tx)(t) - x_0 = \int_{t_0}^t f(s, x(s)) ds$$
$$= \int_{t_0}^t [f(s, x(s)) - f(s, x_0)] + f(s, x_0)] ds$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Local Existence and Uniqueness - 5

Ch3A-22

- By piecewise continuity of f, we know that $f(t,x_0)$ is bounded on $[t_0,t_1]$. Let $h=\max_{t\in[t_0,t_1]}||f(t,x_0)||$.
- Using the Lipschitz condition and the fact that for each $x \in S$,

$$||x(t) - x_0|| \le r, \forall t \in [t_0, t_0 + \delta]$$
, we obtain

$$||(Tx)(t) - x_0|| \leq \int_{t_0}^t \left[||f(s, x(s)) - f(s, x_0)|| + ||f(s, x_0)|| \right] ds$$

$$\leq \int_{t_0}^t \left[L||x(s) - x_0|| + h \right] ds$$

$$< \int_{t_0}^t (Lr + h) ds$$

$$= (t - t_0)(Lr + h)$$

 $\leq \delta(Lr+h)$

© Feng-Li Lian 2004

Ch3A-23

And

$$||Tx - x_0||_C = \max_{t \in [t_0, t_0 + \delta]} ||(Tx)(t) - x_0|$$

$$\leq \delta(Lr + h) \leq r$$

- Hence, choosing $\delta \leq r/(Lr+h)$ ensures that T maps S into S.
- To show that

 ${\it T}$ is a contraction mapping over ${\it S}$:

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Local Existence and Uniqueness - 7

Ch3A-24

• Let $x, y \in S$, consider

$$||(Tx)(t) - (Ty)(t)||$$

$$= \left| \left| \int_{t_0}^t [f(s, x(s)) - f(s, y(s))] ds \right| \right|$$

$$\leq \int_{t_0}^t ||f(s, x(s) - f(s, y(s)))|| ds$$

$$\leq \int_{t_0}^t L||x(s) - y(s)|| ds$$

$$\leq \int_{t_0}^t ds L||x - y||_C$$

• Therefore, for $\delta \leq \frac{\rho}{L}$,

$$||Tx-Ty||_C \leq L\delta ||x-y||_C \leq \rho ||x-y||_C$$

ullet Choosing ho < 1 and $\delta \leq
ho/L$ ensures that

T is a contraction mappint over S.

© Feng-Li Lian 2004

Ch3A-25

 By the contraction mapping theorem, we can conclude that if δ is chosen to satisfy

$$\delta \leq \min\left\{t_1 - t_0, \frac{r}{Lr + h}, \frac{\rho}{L}\right\} \text{ for } \rho < 1$$

then (C.2) will have

a unique solution in S.

- Our final goad is to establish uniqueness of the solution among all continuous functions x(t), that is, uniqueness in χ .
- It turns out that any solution of (C.2) in χ will lie in S.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Local Existence and Uniqueness - 9

- Note that since $x(t_0) = x_0$ is inside the ball B, any continuous solution x(t) must lie inside B for some interval of time.
- Suppose that x(t) leaves the ball B and let $t_0 + \mu$ be the first time x(t) intersects the boundary of B. Then, $||x(t_0 + \mu) x_0|| = r$.
- ullet On the other hand, for all $t \leq t_0 + \mu$,

$$||x(t) - x_0|| \le \int_{t_0}^t \left[||f(s, x(s)) - f(s, x_0)|| + ||f(s, x_0)|| \right] ds$$
 $\le \int_{t_0}^t \left[L||x(s) - x_0|| + h \right] ds$
 $\le \int_{t_0}^t (Lr + h) ds$

Ch3A-27

• Therefore,

$$r = ||x(t_0 + \mu) - x_0|| \le (Lr + h)\mu$$

$$\Rightarrow \mu \ge \frac{r}{Lr+h} \ge \delta$$

- Hence, the solution x(t) cannot leave the set B within the time interval $[t_0, t_0 + \delta]$, which implies that any solution in χ lies in S.
- Consequently, uniqueness of the solution in S implies uniqueness in χ.
- QED

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Lipschitz in x - 1 (3.1)

Ch3A-28

- A function is Lipschitz in x
- Lipschitz constant: L
- Local Lipschitz:

A function f(x) is said to be local Lipschitz on a domain (open and connected set) $D \subset R^n$ if each point of D has a neighborhood D_0 such that f satisfies the Lipschitz condition (3.2) for all points in D_0 with some Lipschitz constant L_0 .

Lipschitz in x - 2

Ch3A-29

A local Lipschitz function on a domain D is not necessarily Lipschitz on D, since the Lipschitz condition may not hold uniformly (with the same constant L) for all points in D.

- A local Lipschitz function on a domain D
 is Lipschitz on every compact
 (cloesed and bounded) subset of D.
- A function f(x) is said to be globally Lipschitz if it is Lipschitz on Rⁿ.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Lipschitz Property & Continuity - 1 (3.1)

Ch3A-30

- The following lemma shows how a Lipschitz constant can be calculated using knowledge of $[\partial f/\partial x]$.
- Lemma 3.1
- Let $f:[a,b] \times D \to R^m$ be continuous for some domain $D \subset R^n$.
- Suppose that $[\partial f/\partial x]$ exists and is continuous on $[a,b] \times D$.
- For a convex subset $W \subset D$, if there is a constant $L \geq 0$ such that

$$||\frac{\partial f}{\partial x}(t,x)|| \le L$$

on $[a,b] \times W$, then

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

for all $t \in [a, b], x, y \in W$.

Lipschitz Property & Continuity - 2

Ch3A-31

 The Lipschitz property is stronger than continuity.

If f(x) is Lipschitz on W,
 then it is uniformly continuous on W
 (Exercise 3.20).

The converse is not true.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Lipschitz Property & Continuity - 3

Ch3A-32

 The following lemma shows that the Lipschitz property is weaker than continuous differentiability.

• Lemma 3.2

If f(t,x) and $[\partial f/\partial x](t,x)$ are continuous on $[a,b]\times D$, for some domain $D\subset R^n$, then f is local Lipschitz in x on $[a,b]\times D$.

• Lemma 3.3

If f(t,x) and $[\partial f/\partial x](t,x)$ are continuous on $[a,b]\times R^n$, then f is globally Lipschitz in x on $[a,b]\times R^n$ iff $[\partial f/\partial x]$ is uniformly bounded on $[a,b]\times R^n$.

© Feng-Li Lian 2004

Global Existence and Uniqueness - 1 (3.1)

Ch3A-33

• Theorem 3.2

(Global Existence and Uniqueness)

Suppose that

f(t,x) is piecewise continuous in t and satisfies

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

 $\forall x, y \in \mathbb{R}^n, \forall t \in [t_0, t_1].$

Then, the state equation $\dot{x} = f(t, x)$,

with $x(t_0) = x_0$,

has a unique solution over $[t_0, t_1]$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Global Existence and Uniqueness - 2

Ch3A-34

 Local Lipschitz property of a function is basically a smoothness requirement.

It is implied by continuous differentiability.

Except for discontinuous nonlinearities,

it is reasonable to expect models of physical sysems

to have locally Lipschitz RHS functions.

- Global Lipshitz property is restrictive.
- The following theorem shows that global existence and uniqueness only needs the local Lipschitz property of f at the expense of having to know more about the solution of the system.

© Feng-Li Lian 2004

Ch3A-35

- Theorem 3.3 (Global Existence and Uniqueness)
- Let f(t,x) be piecewise continuous in t and local Lipschitz in x for all $t \ge t_0$ and all x in a domain $D \subset R^n$.
- Let W be a compact subset of D, $x_0 \in W$, and suppose it is known that every solution of $\dot{x} = f(t, x), x(t_0) = x_0$ lies entirely in W.
- Then, there is a unique solution that is defined for all $t \ge t_0$.

© Feng-Li Lian 2004