Existence of Periodic Orbits (2.6) Ch2B-12

e Periodic orbits in the plane are special
that they divide the plane into
a region inside the orbit and

a region outside it.

e This makes it possible to obtain criteria for
detecting the presence or absence of
periodic orbits for second-order systems,
which have no generalizations
to higher order systems.

e The most celebrated of these criteria are
the Poincaré-Bendixson theorem,
the Bendixson criterion, and
the index method.
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Poincaré-Bendixson Theorem - 1 Ch2B-13
e Theorem (Poincaré-Bendixson):

Let 4T be a bounded positive semiorbit of

&= f(z),i.e., vT(y) = {o(t.y) | 0 < t < oo}

and LT be its positive limit set.

If LT contains no e.p.,

then it is a periodic orbit.
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Poincaré-Bendixson Theorem - 2 Ch2B-14

e Lemma 2.1, Presence of Limit Cycles
(Poincaré-Bendixson Criterion):
Consider & = f(x) and
let M be a closed bounded subset
of the plane,
such that

— M contains no e.p.,
or contains only one e.p.
such that the Jcaobian matrix [0f/0z]
at this point has eigenvalues
with positive real parts.
(Hence, the e.p. is unstable focus or
node.)

— Every trajectory starting in M
stays in M for all future time.

Then, M contains a periodic orbit

of £ = f(x).
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Poincaré-Bendixson Theorem - 3 Ch2B-15
e Intuition:

Bounded trajectories in the plane
will have to approach

periodic orbits or equilibrium points
as time tends to infinity.

e If M contains no e.p.,
then it must contain a periodic orbit.

e If M contains only one e.p.
that satisfies the stated conditions, S
then in the vicinity of that point /
all trajecotries will be moving away from it.

S e |

/
e T herefore, we can choose //, /
a simple closed curve around the e.p. Y
such that the vector field on the curve . /
points outward.
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Geometric Interpretation - 1

e Consider a simple closed curve
defined by V(z) = ¢,
where V() is continuously differentiable.

e The vector field f(x)
at a point x on the curve
points inward
if the inner product of f(x) and
the gradient vector VV () is negative;
that is,

[@) V(@) = ZL@ A + g @) fa@) <O

e The vector field f(xz) points outward
if f(z)- -VV(x)>0.

e It is tangent to the curve
if f(x) VV(x)=0.

Ch2B-16
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Geometric Interpretation - 2

e Trajectories can leave a set
only if the vector field points outward

at some points on its boundary.

e For a set of the form M = {V(z) < ¢},
for some ¢ > 0O,
trajectories are trapped inside M
if f(x) VV(z)<O0
on the boundary V(z) = c.

e For annular region of the form
M = {W(z) > ¢; and V(z) < ¢a},
for some ¢y > 0,c0 >0
trajectories are trapped inside M
if f(z)-VV(z)<0onV(z)=co
and f(x) -VW(xz) >0 on W(z) = c1.

Ch2B-17
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Harmonic Oscillator - 1
Example 2.7:
Consider the harmonic oscillator:
Li?l = I
i‘g = —I
the annual region M = {¢; < V(z) < ¢p},
where V(x) = .’1:% + :Rg and ¢y > ¢1 > 0.

The set M is closed, bounded, and
free of e.p.,
since the only e.p. is at (0,0).

Trajectories are trapped inside M
since f(z)-VV(x) = 0 everywhere.

e By PBC, there is a periodic orbit in M.

Ch2B-18
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Harmonic Oscillator - 2

¢ Example 2.7:

e PBC assures

the existence of a periodic orbit, but not
its uniqueness.

e Harmonic oscillator has a continuum
of periodic orbits in M.

Ch2B-19
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Example 2.8 - 1
¢ Example 2.8: The system:
i1 = a1+ o —x1(af + a3)
Ty = —2x1+ x5 — .’L‘Q(:I:% + a:%)

has a unique e.p. at (0,0).

e the Jacobian matrix:

8; |:1—333%—$% 1-—2x120 }
z=0

ox

=0 —2—2z12p 1 —2?— 323

has eigenvalues 1 + j/2.

Ch2B-20
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Example 2.8 - 2

o Let M = {V(z) < ¢},
where V(z) = 2% + 23 and ¢ > 0.

e M is closed, bounded, and
contains only one e.p. at which
the Jacobian matrix has eigenvalues with
positive real parts.

e On the surface V(x) = ¢, we have:

22121 + 22 — 21 (2§ + 23)]
+2mo[—221 + o — wo(x? + 23)]

2(27 4 23) — 2(2f + 23)% — 27120
2(a% + 23) — 2(2F + 23)2 + (27 + 23)

= 3c—2c2

IA

Ch2B-21
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Example 2.8 - 3

e where we used the fact that
|2z1x0| < :c% + a:%

e By choosing ¢ > 1.5,
we can ensure that all trajectories are
trapped inside M.

e Hence, by PBC,
there is a periodic orbit in M.

Ch2B-22
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Negative-Resistance Oscillator - 1

¢ Example 2.9:
The negative-resistance oscillator:

4 ek (W) +v=0
where € is a positive constant
h satisfies the conditions:

h(0) = 0,h'(0) < 0,

Uli_)n&) h(v) = oc:J,vli)r_ﬂoo h(v) = —x

e To simplify the analysis,
we impose the additional requirements:

h(v) = —h(-v),

h(v) <0 for 0 < v < a,
h(v) >0 for v > a

Ch2B-23
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Negative-Resistance Oscillator - 2

e Choose the state variables as:

r1 = v, and zo = v + eh(v)

e T he state model as:

1 = xp —eh(x1)

.’)":2 —I

which has a unique e.p. at the origin.

e First, by looking at the vector field,
we can show that
every nonequlilibrium solution
rotates around the e.p.
in the clockwise direction.

e Divide the state plane into four regions
by the intersection of

zo —€eh(z1) =0and 21 =0

Ch2B-24
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Negative-Resistance Oscillator - 3

e It is not difficulty to see a solution
from A = (0,p) to E = (0, —a(p)).

¢ We can show that
if p is chosen large enough,
then a(p) < p.

e Consider the function:

V() =50 +43)

e To show that a(p) < p,
it is enough to show that V(E)—-V(A) < 0,
since V(E) — V(A) = 3[a?(p) — p?] :=6(p)

Ch2B-25
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Negative-Resistance Oscillator - 4

Ch2B-26
e The derivative of V() is given by
V(z) = wz1d1 + x0do
A
= x120 —ex1h(x1) — T122 X
= —ex1h(z1) pﬂ____ B
'\\\ IIII
\/
e Thus, V is positive for z1 < a /P'{
- a/lc
and negative for z1 > a. // x‘h
- 1
/D
Ol
_(-_f_ |
PlE
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Negative-Resistance Oscillator - 5 Ch2B-27
e Now,
50) = V) — V() = [ V(a®)adt
AE A
XE
A
e If p is small, P B
\f
the whole arc will lie inside the strip \
O0<z <a. /}'I
Then, §(p) will be positive. a/flC
vl
/D
e As p increases, ~a(p) E 4
a piece of the arc will lie outside the strip

(BCD).
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Negative-Resistance Oscillator - 6

where along the arc AB,
xp is a given function of z;.

e Clearly, §1(p) is positive.

Ch2B-28
e Divide the integral into three parts:
6(p) = 61(p) + d2(p) + 63(p)
) = / V(x(t))dt
1(p) n (z(t)) X,
) = / V(x(t))dt e
2(0) = [ V() P8
. N
5 = / V ((t))dt \
() = [ V() )
fl
|'I||I
af/f,.-_cﬁ_‘
/] *
/P
~o.(p)
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Negative-Resistance Oscillator - 7 Ch2B-29
e Consider the first term:
51(p) = — / o1 h(zy)dt
1(p) g €T (1)
dt X
= — h —d: 2
/AB€$1 ($1)dac1 1
PI—~B |,
h“a:"
e Substituting for dzq/dt i{
from the state modei, we obtain: a /
1 e
1(p) ! (ajl)xg—eh(xl) 1 b
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Negative-Resistance Oscillator - 8 Ch2B-30
e AsS p increases,
xo — eh(x1) increases for the acr AB.
A
X
e Hence, 1(p) decreases as p — . p-A---.. B
\\\ III|
/II[I
e Similarly, d3(p) is positive and decreases 5 ,.’I
I —
as p — oo. /// X
1
/D
A
“o(p) [
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Negative-Resistance Oscillator - 9 Ch2B-31
e Consider the second term:
8 = —] exih(xq)dt
2(p) o €1 (z1) 2
dt
= —/ exi1h(x1)—dzo Xy
BCD dxo A
P8 |
\\ ,'I
\/
e Substituting for dzo/dt /;'I
from the state model, we obtain: a/flC
/] X
é = / eh(xq1)dx / 1
2(p) . (z1)dxo b
where along the arc BCD, /
—[_f. |
x1 is a given function of z». () E

e Since h(x1) >0 and dxzs < 0O,
the integral is negative.
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Negative-Resistance Oscillator - 10 Ch2B-32

e AsS p increases,
the acr ABCDE moves to the right and
the domain of integration for d>(p)
increases.

e 6>(p) decreases, as p increases
and evidently limy— d2(p) = —oc.

e In summary:
- d(p) >0, if p< r, for some r > 0. 5(p) !
- 6(p) decreases monotonically to —oc as

p— 00, p>T

e From the Fig.
by choosing p large enough, \
&(p) is negative,

hence, a(p) < p.
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Negative-Resistance Oscillator - 11 Ch2B-33

e Since h(-) is an odd function,
due to its symmetry, X, A
if (z1,z2) is a solution, £ B |
then so is (—z1, —x2). See Fig. 2 }/
.'

e Let M be the region / \ /C =

enclosed by this closed ¢

Irve. 1

e Then very trajectory starting in M at ¢t =0 “_‘

JRpE R -

will remain inside for all ¢ >> 0.

e Because
(1) the directions of the vector fields
on the z»-axis segments and
(2) uniqueness of solutions
(trojectories do not intersect each other).
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Negative-Resistance Oscillator - 12 Ch2B-34

e M is closed, bounded, and
has a unique e.p. at the origin.

e The Jacobian matrix at the origin:

of ={ 0 1 ] c

A= Pplemo — | 1 —el'(0)
has eigenvalues wiht positive real parts
since h/(0) < O. ' D

By PBC, there is a closed orbit in M. ! EF—

e This closed orbit is unique iff
a(p) =p.
Only one value of p, see Fig.

e Every nonequilibrium solution spirals
toward the unique closed orbit.
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Bendixson Criterion - 1 Ch2B-35

e To rule out the existence of periodic orbits:

e Lemma 2.2, Absence of Limit Cycles
(Bendixson Criterion)
If, on a simply connected region D
of the plane,
the express df1/0x1 + dfz/0xo
is not identially zero and
does not change sign,
then z = f(x) has no periodic orbits
lying entirely in D.
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Bendixson Criterion - 2 Ch2B-36

e Proof:
e On any orbit of z = f(x),
we have dxp/dx1 = fo/f1.
Therefore, on any closed orbit v, we have

This implies, by Green's theorem, that

ofr | 0f2
2L 4 22y g day = 0
f 8(8.’,{:1 +8&,2) T2

where S is the interior of ~.

o If 0f1/0x1 + 0fz/0x >0 or (<0 ) on D,
then we cannot find a region S C D
such that the last equality holds.
Hence, there can be no closed orbits en-
tirely in D.
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Bendixson Criterion - 3 Ch2B-37

e Example 2.10: Consider the system:

1 = fi(x1,20) =22
. _ 2 3
o = fo(xy,22) = axy + bxp — xTzo — o

and let D be the whole plane.

e We have

%4_%:(,_90312
ori  Oxo

Hence, there can be no periodic orbits
if b <O.
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Poincaré Index of An E.P. -1 Ch2B-38

e Consider z = f(z)

e let C be a simple closed curve
not passing through any of its E.P.

e Consider the orientation of the vector field
f(x) at a point p € C.

e |Letting p traverse C
in the counterclockwise direction,
the vector f(x) rotates continuously and,
upon returning to the original position,
must have rotated an angle 27k
for some integer k,
where the angle is measured
counterclockwise.
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Poincaré Index of An E.P. - 2 Ch2B-39

e The integer k is called
the index of the closed curve C.

e If C is chosen
to encircle a single isolated E.P. z,
then k is called the index of .
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Poincaré Index of An E.P. - 3 Ch2B-40

e Lemma 2.3:

(a) The index of
a node, a focus, or a center is +1.

(b) The index of
a (hyberbolic) saddle is —1.

(c) The index of
a closed orbit is +1.

(d) The index of
a closed curve not encircling any e.p.
is 0.

(e) The index of a closed curve
is equal to the sum of the indices
of the e.p. within it.
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Poincaré Index of An E.P. - 4 Ch2B-41
e Colollary 2.1:

Inside any periodic orbit ~,

there must be at least one e.p.

Suppose the e.ps. inside v are hyperbolic,

then if N is the number of nodes and foci

and S is the number of saddles,

it must be that N - S = 1.

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Poincaré Index of An E.P. -5
e An e.p. is hyperbolic
if the Jacobian at that point has

no eigenvalues on the imaginary axis.

e If the e.p. is not hyperbolic,

then its index may differ from =+1.

e The index method is usually useful
in ruling out the existence of periodic orbits

in certain regions of the plane.

Ch2B-42
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Poincaré Index of An E.P. - 6

e Example 2.11: The system:

r1 = —z1+z122
&y = w1+ x> —2wiwo
has two e.p. at (0,0) and (1,1).

The Jacobian matrices at these points are

o:) 00

el = [ 4]

Hence, (0,0) is a saddle,

while (1,1) is a stable focus.

The only combination of e.p.

that can be encircled by a periodic orbit

is a single focus.

Ch2B-43
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