Multlple EqU|I|brla (23) Ch2A-32
e For linear systems,
— det A # 0 (A has no zero eigenvalues),
x = Ax has an isolated equilibrium point
at = 0.
— det A =0, the system has a continuum
of equilibrium points.
— There are the only possible patterns.
e For nonlinear systems,
— it can have multiple isolated equilibrium
points.
e the tunnel-diode circuit
e the pendulum euqation
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Tunnel-Diode Circuit Ch2A-33
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Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode vg—ig characteristic.

Kirchhoff’'s current/voltage law:

0 (KCL)
0 (KVL)

ic+ip — 1L
vo—FE+ Rij, +v;, =
State model:
- state: 1 = v,z =17, and
- input: v=F,
—iC:Cd—gg, ’UL:L%
i1 = =[-h(w1) + o]
C

%[—:r:l — Rap + u]

)

Figure 1.3: Equilibrium points of the tunnel-diode circuit.

Equilibrium points:

0 =
0 =

—h(z1) + 22
—x1 — Rxp 4+ u

That is, the roots of:
1

h(z1) = i

1

x| &
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Tunnel-Diode Circuit - 1

Example 2.1:
State Model:

b= [-h(a1) + o]

. 1
vy = —[-x1 — Rxo+ ]

L

Assume that the circuit parameters are:
u=12V,R= 15k, C =2pF, L =5uH

time ¢ in nanoseconds
xo,h(xz1) in MA

State Model:
21 = 0.5[=h(z1) + 7]

&p = 0.2[-x7 — 1.520 + 1.2]

and

h(z1) = 17.76x1 — 103.792% + 229.62x7

—226.3127 4 83.72z3

Equilibrium Points: (let 7 = 2o = 0)

(0.063,0.758), (0.285,0.61),(0.884,0.21)

Ch2A-34
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Tunnel-Diode Circuit - 2

Example 2.3:
Tunnel-Diode Circuit:
The Jacobian matrix:

3_f_ —0.5h(z1) 0.5
or -0.2 -0.3

Evaluated at E.P. Q1,@2,Q3:

~3.598 0.5 |

Al:{ —02 -03
182 05

. (—3.57,-0.33)

A, = { 02 —03 | (1.77,-0.25)
e — [ —1.427 0.5 | 1 4
37| -02 -03)’ (-1.33,-04)
[ =99 o015
1= { —0.06 —0.99 } ’
v, — | 099 -023
271 _0.09 097 |’
Ve | 0.98 —0.43
37| -0.19 -0.89 |’

Ch2A-35
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Tunnel-Diode Circuit - 3 Ch2A-36

e (01 is a stable node
Q> is a sddle point
@3 is a stable node

e The two special trajectories,
which approach @,
are the stable trajectories of the saddle.
They form a curve that divides the plane
into two halves. ZL*_,(
Which is called a separatrix. i
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Tunnel-Diode Circuit - 4 Ch2A-37

171 e R N
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Tunnel-Diode Circuit - 5

Ch2A-38
e T he separatrix partitions the plane into two
regions of different qualitative behavior.
e In an experimental setup,
we shall observe one of the two steady-
state operating points @1 or @3,
depending on the initial capacitor voltage
and inductor current.
e The equilibrium point at @, is never ob-
served in practice
because the ever-present physical noise
would cause the trajectories
to diverge from Q>
even if it were possible to set up the exact
initial conditions corresponding to @Q-.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Tunnel-Diode Circuit - 6 Ch2A-39

e The tunnel-diode circuit is refered as
a bistable circuit,
because it has two steady-state operating
points.

e Used in computer memory,
Ql _}H OH
Q3 _}H 1!!

e Triggering from @1 to Q3 or vice versa
is achieved by a triggering signal of
sufficiently amplitude and duration
that allows the trajectory to move to the
other side of the separatrix.

e Hysteresis characteristics:

Figure 1.3: Equilibrium points of the tunnel-diode circuit.
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Pendulum Ch2A-40

Using Newton’s Second Law,
Write the equation of motion
/ in the tangential direction:

0 mll = —mgsin 6 — kl6

State model (let 21 = 0,25 = 0):

mg :
r1 = ¥
Figure 1.1: Pendulum. PR —gsinml B £T2
l m
Equilibrium points (let 21 = 25, = 0):
(7, 0)
0 = x»
k
0 = —gsin r1 — —I2
l m
Equilibrium points are (nw,0),n = 0,+1,+2, ...,
or, physically, (0,0) and (=, 0).
(0,0)
Question? Which one is stable or unstable?
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Pendulum Equation w/ Friction - 1 Ch2A-41

¢ Example 2.2:
State model:

r1 = x>

zp = —10sinzy — x>

e (0,0): or (0,0), (2w, 0),(—2m0), etc.
a stable focus.

e (m,0): or (m,0),(—m0), etc.
a saddle.

e This picture is repeated periodically.

e Trajectories approach different E.P.,
corresponding to # of full swings.
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Pendulum Equation w/ Friction - 2

e A and B have the same initial position,
but different speeds.
So, different initial conditions.

e A oscillates with decaying amplitude.
B has more initial kinectic energy.
B makes a full swing

before to oscillate with decaying amplitude.

e The unstable E.P. (7, 0)
cannot be maintained in practice.

Ch2A-42
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Pendulum Equation w/ Friction - 3

e Example 2.4:
Pendulum Equation:
The Jacobian matrix:
of _ [ 0 1 ]

gr | —10cosx; —1

¢ Evaluated at E.P. (0,0), (w,0):

[ o 1 .
A = { 1o 1 } . (—0.5+;3.12)

_[o 1
n=] 8 L caran

v, — | —0.05-0.30 —0.05 + j0.30
1= 0.95 0.95 ’
[ —0.35 —0.26 |
V2= { 094 —-0.97 J =

e (0,0) is a stable focus
(m,0) is a sddle point

Ch2A-43

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis




Pendulum Equation w/ Friction - 4

separatrices:

Ch2A-44
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Qualitative Behavior Near E.P. - 1

e Phase portraits of Tunnel-Diode Circuit and
Pendulum Equation shows that
the qualitative behavior in the vicinity of
each E.P.
looks just like those for linear systems.

e Tunnel-Diode circuit:
The trajectories near Q1,Q2,Q3
are similar to
those associated with a stable node, saddle
point, and stable node, respectively.

e Pendulum:
The trajectories near (0,0), (r,0)
are similar to those associated with a stable
focus and saddle point, respectively.

Ch2A-45
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Qualitative Behavior Near E.P. - 2

e In this section,
we analyzed the behavior near the E.P.
w/o drawing the phase portrait.

e Except for some special cases,
the qualitative behavior of a nonlinear sys-
tem near an E.P. can be determined via
linearization with respect to that point.

Ch2A-46
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A Center - 1

¢ Example 2.5:
A case of E.P. is a Center:

The system:
i1 = —wp — pay (27 + 23)
In = @1 — p:.'r:g(:r:% + T%)

has an E.P. at the origin.

The linearized state equation at the origin
has eigenvalues +j.

A center E.P.

e The qualitative behavior of
the nonlinear system:

xr1 =rcosf = —,wr3

xp =rsind 6=1

- a stable focus when p >0
- an unstable focus when <0

Ch2A-47
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Limit Cycles: Harmonic Oscillator - 1 (2.4) Ch2B-3
e A system oscillates
when it has a nontrivial periodic solution:
x(t+T)==x(t),Vt <0, forsome T >0
e The image of a periodic solution
in the phase portrait
is a closed trajectory,
which is usually called
a periodic orbit or a closed orbit.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Limit Cycles: Harmonic Oscillator - 1 Ch2B-4

e In 2nd-order linear system: Oscillation
- with eigenvalues +j4,
- x =20 is a center,

- the solution:

z1(t) = rgcos(Bt + 6p),

22(t) = rosin(Bt + ),

where
[ Do 0 Drme
ro = \21(0)+25(0),
0o = tan—l[z2(0)1?
21(0)

- the harmonic oscillator
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Limit Cycles: Harmonic Oscillator - 3

e Two fundamental problems

with the linear oscillator:

1. robustness:
perturbation will destroy the oscillation.
the linear oscillator is
not structurally stable.

2. the amplitude of oscillation is
dependent on the initial conditions.

e It is possible to build

physical nonlinear oscillators

such that

1. the nonlinear oscillator is
structurally stable.

2. the amplitude of oscillation
(at steady state)
is independent of initial conditions.

Ch2B-5
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Limit Cycles: Energy Approach - 1

e The negative-resistance oscillator:

Tl =

T2 —x1 — eh/(x1)zo
the system has only one E.P.
at x1 = a0 = 0.

e T he Jacobian matrix:
of

A=2
ox

[ o 1
=0 [ —1 —eh/(0) l

e Since h/(0) < 0, the origin is
either an unstable node
or unstable focus,
depending on the value of eh/(0).

Ch2B-6
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Limit Cycles: Energy Approach - 2 Ch2B-7

e All trajectories starting near the origin
would diverge away from it
and head toward infinity.

e T he resistive element is " active”,
and supplies energy.

e The total energy stored in the capacitor
and inductor at any time ¢ is given by:

1 .5 1 5
E=-C —L
> ’Uc+2 17,

1
where ve = x1,t, = —h(x1) — —x2,
€

e=,/L/C

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Limit Cycles: Energy Approach - 3 Ch2B-8

e Rewrite the energy expression as:

1
Ezic{x%jt

2
eh(z1) + wz] }

e The rate of change of energy is given by:
E = C{iﬂl—’ifl + [eh(z1) + 2]
[eh/ (1)1 + 2] |
= C {$1$2 + [eh(z1) + z2]
[eh!(21)2 = w1 — b (2121 |
= C {xlasg —ex1h(z1) — :15'1:1)2}

= —eCx1h(z1)
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Limit Cycles: Closed Orbit Ch2B-9

e Near the origin, the trajectory gains energy
since for small |z1|, z1h(x1) is negative.
h(xz1) and —.’L’]_h(:b'j!_):

e Also, the trajectory /

. i e
gains energy ; N o /

within the strip —a < xz1 < b, and \

= x
loses energy outside the strip. b wx
e A stationary oscillation will occur
if, along a trajectory,
the net exchange of energy over one cycle
is zero.
e Such a trajectory will be a closed orbit.
The negative-resistance oscillator
has an isolated closed orbit.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Limit Cycles: Van der Pol Equation - 1 Ch2B-10

e Example 2.6 Van der Pol equation: e The closed orbit of e = 0.2 (small value)

. is a smooth orbit

r1 = I

) 5 that is closed to a circle of radius 2.
o = —x1+€e(l —z7)xo

o e For medium value of € (=1.0),

e For e =0.2,1.0,5.0 are shown in Figs. _ .
the circular shape of the closed orbit
is distorted.

e There is a unique closed orbit

that attracts all trajectories
e For large value of ¢ (=5.0),

starting off the orbit. . )
the closed orbit is severely distorted.

e = 0.2 € = 1.0\ e=>5.0
= _ xz‘ | 1ol 11 [

ry
1

o
o |
o

1
(5]

o

o1
o
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Stable & Unstable Limit Cycles Ch2B-11

e In the case of harmonic oscillator,
there is a continuum of closed orbit.

stable limit cycle

S

e In the Van der Pol example,
there is only one isolated periodic orbit.

e An isolated periodic or bit is called
a limit cycle.

e stable and unstable limit cycles:

stable: 1 = o
: 2
tp = —wx1+e(1l—x7)x X2
unstable: =z = —xo //\

. _ 2 S AN

o = x1 —€e(l —z7)zo 7 A '. )
i) =R IR | T i
N\ s 1

e Two special forms: \\_j/
- ¢ — 0: the averaging method

- € — oo: the singular perturbation method (b)

‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis

Existence of Periodic Orbits (2.6) Ch2B-12

e Periodic orbits in the plane are special
that they divide the plane into
a region inside the orbit and
a region outside it.

e This makes it possible to obtain criteria for
detecting the presence or absence of
periodic orbits for second-order systems,
which have no generalizations
to higher order systems.

e The most celebrated of these criteria are
the Poincaré-Bendixson theorem,
the Bendixson criterion, and
the index method.
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Poincaré-Bendixson Theorem - 1

e Theorem (Poincaré-Bendixson):
Let 4T be a bounded positive semiorbit of
@ = f(z),i.e., vT(y) = {o(t.y) | 0 <t < oo}
and LT be its positive limit set.
If LT contains no e.p.,

then it is a periodic orbit.

Ch2B-13
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Poincaré-Bendixson Theorem - 2

e Lemma 2.1, Presence of Limit Cycles
(Poincaré-Bendixson Criterion):
Consider & = f(z) and
let M be a closed bounded subset
of the plane,
such that

— M contains no e.p.,
or contains only one e.p.
such that the Jcaobian matrix [0f/0z]
at this point has eigenvalues
with positive real parts.
(Hence, the e.p. is unstable focus or
node.)

— Every trajectory starting in M
stays in M for all future time.

Then, M contains a periodic orbit
of £ = f(x).

Ch2B-14
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Poincaré-Bendixson Theorem - 3 Ch2B-15

e Intuition:
Bounded trajectories in the plane
will have to approach
periodic orbits or equilibrium points
as time tends to infinity.

e If M contains no e.p.,
then it must contain a periodic orbit.

e If M contains only one e.p.

that satisfies the stated conditions, AR
then in the vicinity of that point / /|
all trajecotries will be moving away from it. 4
ity 5
/ \( N )
- e PN ’//
e T herefore, we can choose / : /
a simple closed curve around the e.p. v s
such that the vector field on the curve . /

points outward.
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