Multiple Equilibria (2.3)

Ch2A-32

- For linear systems,
 - det $A \neq 0$ (A has no zero eigenvalues), $\dot{x} = Ax$ has an isolated equilibrium point at x = 0.
 - det A = 0, the system has a continuum of equilibrium points.
 - There are the only possible patterns.
- For nonlinear systems,
 - it can have multiple isolated equilibrium points.
- the tunnel-diode circuit
- the pendulum eugation

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Tunnel-Diode Circuit

Ch2A-33

Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode v_R - i_R characteristic.

Kirchhoff's current/voltage law: Equilibrium points:

$$i_C + i_R - i_L = 0 \text{ (KCL)}$$

$$v_C - E + Ri_L + v_L = 0 \text{ (KVL)}$$

State model:

- state: $x_1 = v_C, x_2 = i_L$, and

- input: u = E,

-
$$i_C = C \frac{dv_C}{dt}$$
, $v_L = L \frac{di_L}{dt}$

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

Figure 1.3: Equilibrium points of the tunnel-diode circuit.

That is, the roots of:

$$h(x_1) = \frac{E}{R} - \frac{1}{R}x_1$$

Tunnel-Diode Circuit - 1

Ch2A-34

• Example 2.1:

State Model:

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

• Assume that the circuit parameters are:

$$u = 1.2V, R = 1.5k\Omega, C = 2pF, L = 5\mu H$$

- time t in nanoseconds $x_2, h(x_1)$ in mA
- State Model:

$$\begin{array}{rcl} \dot{x}_1 &=& 0.5[-h(x_1)+x_2]\\ \dot{x}_2 &=& 0.2[-x_1-1.5x_2+1.2]\\ \text{and}\\ h(x_1) &=& 17.76x_1-103.79x_1^2+229.62x_1^3\\ && -226.31x_1^4+83.72x_1^5 \end{array}$$

• Equilibrium Points: (let $\dot{x}_1 = \dot{x}_2 = 0$) (0.063,0.758), (0.285,0.61),(0.884,0.21)

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Tunnel-Diode Circuit - 2

Ch2A-35

• Example 2.3:

Tunnel-Diode Circuit:

The Jacobian matrix:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} -0.5h'(x_1) & 0.5\\ -0.2 & -0.3 \end{bmatrix}$$

• Evaluated at E.P. Q_1, Q_2, Q_3 :

$$A_{1} = \begin{bmatrix} -3.598 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \quad (-3.57, -0.33)$$

$$A_{2} = \begin{bmatrix} 1.82 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \quad (1.77, -0.25)$$

$$A_{3} = \begin{bmatrix} -1.427 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \quad (-1.33, -0.4)$$

$$V_{1} = \begin{bmatrix} -.99 & 0.15 \\ -0.06 & -0.99 \end{bmatrix},$$

$$V_{2} = \begin{bmatrix} 0.99 & -0.23 \\ -0.09 & 0.97 \end{bmatrix},$$

$$V_{3} = \begin{bmatrix} -0.98 & -0.43 \\ 0.10 & 0.89 \end{bmatrix},$$

Tunnel-Diode Circuit - 3

Ch2A-36

• Q_1 is a stable node Q_2 is a sddle point Q_3 is a stable node

into two halves.

The two special trajectories,
 which approach Q₂,
 are the stable trajectories of the saddle.

They form a curve that divides the plane

Which is called a separatrix.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Tunnel-Diode Circuit - 4

Ch2A-37

© Feng-Li Lian 2004

Tunnel-Diode Circuit - 5

Ch2A-38

• The separatrix partitions the plane into two regions of different qualitative behavior.

- In an experimental setup, we shall observe one of the two steadystate operating points Q_1 or Q_3 , depending on the initial capacitor voltage and inductor current.
- ullet The equilibrium point at Q_2 is never observed in practice because the ever-present physical noise would cause the trajectories to diverge from Q_2 even if it were possible to set up the exact initial conditions corresponding to Q_2 .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Tunnel-Diode Circuit - 6

Ch2A-39

- The tunnel-diode circuit is refered as a bistable circuit, because it has two steady-state operating points.
- Used in computer memory, $Q_1 \rightarrow'' 0''$ $Q_3 \rightarrow'' 1''$
- ullet Triggering from Q_1 to Q_3 or vice versa is achieved by a triggering signal of sufficiently amplitude and duration that allows the trajectory to move to the other side of the separatrix.

Figure 1.3: Equilibrium points of the tunnel-diode circuit.

Figure 1.1: Pendulum.

Using Newton's Second Law, Write the equation of motion in the tangential direction:

$$ml\ddot{\theta} = -mg\sin\theta - kl\dot{\theta}$$

State model (let $x_1 = \theta, x_2 = \dot{\theta}$):

$$\dot{x}_1 = x_2
\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Equilibrium points (let $\dot{x}_1 = \dot{x}_2 = 0$):

$$0 = x_2$$

$$0 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Equilibrium points are $(n\pi, 0), n = 0, \pm 1, \pm 2, ...,$ or, physically, (0,0) and $(\pi,0)$.

Question? Which one is stable or unstable?

© Feng-Li Lian 2004

(0,0)

 $(\pi,0)$

Nonlinear Systems Analysis

Pendulum Equation w/ Friction - 1

Ch2A-41

• Example 2.2:

State model:

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -10\sin x_1 - x_2$

- (0,0): or $(0,0),(2\pi,0),(-2\pi,0)$, etc. a stable focus.
- $(\pi,0)$: or $(\pi,0),(-\pi,0)$, etc. a saddle.
- This picture is repeated periodically.
- Trajectories approach different E.P., corresponding to # of full swings.

Pendulum Equation w/ Friction - 2

Ch2A-42

 A and B have the same initial position, but different speeds.

So, different initial conditions.

- ullet A oscillates with decaying amplitude.
 - B has more initial kinectic energy.
 - B makes a full swing

before to oscillate with decaying amplitude.

• The unstable E.P. $(\pi,0)$

cannot be maintained in practice.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Pendulum Equation w/ Friction - 3

Ch2A-43

• Example 2.4:

Pendulum Equation:

The Jacobian matrix:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1\\ -10\cos x_1 & -1 \end{bmatrix}$$

• Evaluated at E.P. $(0,0), (\pi,0)$:

$$A_{1} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix}, \quad (-0.5 \pm j3.12)$$

$$A_{2} = \begin{bmatrix} 0 & 1 \\ 10 & -1 \end{bmatrix}, \quad (-3.7, 2.7)$$

$$V_1 = \begin{bmatrix} -0.05 - j0.30 & -0.05 + j0.30 \\ 0.95 & 0.95 \end{bmatrix},$$

$$V_2 = \begin{bmatrix} -0.35 & -0.26 \\ 0.94 & -0.97 \end{bmatrix},$$

• (0,0) is a stable focus

 $(\pi,0)$ is a sddle point

Nonlinear Systems Analysis

Qualitative Behavior Near E.P. - 1

Ch2A-45

- Phase portraits of Tunnel-Diode Circuit and Pendulum Equation shows that the qualitative behavior in the vicinity of each E.P.
 - looks just like those for linear systems.
- Tunnel-Diode circuit:

© Feng-Li Lian 2004

The trajectories near Q_1,Q_2,Q_3 are similar to those associated with a stable node, saddle point, and stable node, respectively.

Pendulum:

The trajectories near $(0,0),(\pi,0)$ are similar to those associated with a stable focus and saddle point, respectively.

Qualitative Behavior Near E.P. - 2

Ch2A-46

Ch2A-47

- In this section,
 we analyzed the behavior near the E.P.
 w/o drawing the phase portrait.
- Except for some special cases, the qualitative behavior of a nonlinear system near an E.P. can be determined via linearization with respect to that point.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

A Center - 1

• Example 2.5:

A case of E.P. is a Center:

The system:

$$\dot{x}_1 = -x_2 - \mu x_1 (x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_1 - \mu x_2 (x_1^2 + x_2^2)$$

has an E.P. at the origin.

The linearized state equation at the origin has eigenvalues $\pm j$.

A center E.P.

 The qualitative behavior of the nonlinear system:

$$x_1 = r \cos \theta$$
 $\dot{r} = -\mu r^3$
 $x_2 = r \sin \theta$ $\dot{\theta} = 1$

- a stable focus when $\mu > 0$
- an unstable focus when $\mu < 0$

Limit Cycles: Harmonic Oscillator - 1 (2.4)

Ch2B-3

A system oscillates

when it has a nontrivial periodic solution:

$$x(t+T) = x(t), \forall t \leq 0$$
, for some $T > 0$

- The image of a periodic solution
 - in the phase portrait
 - is a closed trajectory,
 - which is usually called
 - a periodic orbit or a closed orbit.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Limit Cycles: Harmonic Oscillator - 1

Ch2B-4

- In 2nd-order linear system: Oscillation
 - with eigenvalues $\pm j\beta$,
 - x = 0 is a center,
 - the solution:

$$z_1(t) = r_0 \cos(\beta t + \theta_0),$$

$$z_2(t) = r_0 \sin(\beta t + \theta_0),$$

where

$$r_0 = \sqrt{z_1^2(0) + z_2^2(0)},$$

$$\theta_0 = \tan^{-1} \left[\frac{z_2(0)}{z_1(0)} \right],$$

- the harmonic oscillator

Limit Cycles: Harmonic Oscillator - 3

Ch2B-5

- Two fundamental problems with the linear oscillator:
 - 1. robustness:

perturbation will destroy the oscillation.

the linear oscillator is

not structurally stable.

- 2. the amplitude of oscillation is dependent on the initial conditions.
- It is possible to build physical nonlinear oscillators such that
 - 1. the nonlinear oscillator is structurally stable.
 - the amplitude of oscillation (at steady state)
 is independent of initial conditions.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Limit Cycles: Energy Approach - 1

Ch2B-6

• The negative-resistance oscillator:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 - \epsilon h'(x_1)x_2$$

the system has only one E.P. at $x_1 = x_2 = 0$.

• The Jacobian matrix:

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} 0 & 1\\ -1 & -\epsilon h'(0) \end{bmatrix}$$

 Since h'(0) < 0, the origin is either an unstable node or unstable focus, depending on the value of ϵh'(0).

Limit Cycles: Energy Approach - 2

Ch2B-7

- All trajectories starting near the origin would diverge away from it and head toward infinity.
- The resistive element is "active", and supplies energy.
- The total energy stored in the capacitor and inductor at any time t is given by:

$$E = \frac{1}{2}Cv_C^2 + \frac{1}{2}Li_L^2$$

where
$$v_C = x_1, i_L = -h(x_1) - \frac{1}{\epsilon}x_2,$$

$$\epsilon = \sqrt{L/C}$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Limit Cycles: Energy Approach - 3

Ch2B-8

Rewrite the energy expression as:

$$E = \frac{1}{2}C\left\{x_1^2 + \left[\epsilon h(x_1) + x_2\right]^2\right\}$$

The rate of change of energy is given by:

$$\dot{E} = C \left\{ x_1 \dot{x}_1 + [\epsilon h(x_1) + x_2] \right\}$$

$$[\epsilon h'(x_1) \dot{x}_1 + \dot{x}_2] \right\}$$

$$= C \left\{ x_1 x_2 + [\epsilon h(x_1) + x_2] \right\}$$

$$[\epsilon h'(x_1) x_2 - x_1 - \epsilon h'(x_1) x_2] \right\}$$

$$= C \left[x_1 x_2 - \epsilon x_1 h(x_1) - x_1 x_2 \right]$$

$$= -\epsilon C x_1 h(x_1)$$

Limit Cycles: Closed Orbit

Ch2B-9

 Near the origin, the trajectory gains energy since for small $|x_1|$, $x_1h(x_1)$ is negative.

 Also, the trajectory gains energy within the strip $-a < x_1 \le b$, and loses energy outside the strip.

- A stationary oscillation will occur if, along a trajectory, the net exchange of energy over one cycle is zero.
- Such a trajectory will be a closed orbit. The negative-resistance oscillator has an isolated closed orbit.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Limit Cycles: Van der Pol Equation - 1

Ch2B-10

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2$

• Example 2.6 Van der Pol equation: • The closed orbit of $\epsilon = 0.2$ (small value) is a smooth orbit

that is closed to a circle of radius 2.

- For $\epsilon = 0.2, 1.0, 5.0$ are shown in Figs.
- For medium value of ϵ (=1.0), the circular shape of the closed orbit is distorted.
- There is a unique closed orbit that attracts all trajectories starting off the orbit.
- For large value of ϵ (=5.0), the closed orbit is severely distorted.

© Feng-Li Lian 2004

Stable & Unstable Limit Cycles

Ch2B-11

 In the case of harmonic oscillator, there is a continuum of closed orbit.

- In the Van der Pol example, there is only one isolated periodic orbit.
- An isolated periodic or bit is called a limit cycle.

stable:
$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + \epsilon(1 - x_1^2)x_2$

- Two special forms:
 - $\epsilon \rightarrow 0$: the averaging method
 - $\epsilon \to \infty$: the singular perturbation method

unstable: $\dot{x}_1 = -x_2$ $\dot{x}_2 = x_1 - \epsilon (1 - x_1^2) x_2$

unstable limit cycle

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Existence of Periodic Orbits (2.6)

Ch2B-12

- Periodic orbits in the plane are special that they divide the plane into a region inside the orbit and a region outside it.
- This makes it possible to obtain criteria for detecting the presence or absence of periodic orbits for second-order systems, which have no generalizations to higher order systems.
- The most celebrated of these criteria are the Poincaré-Bendixson theorem, the Bendixson criterion, and the index method.

Poincaré-Bendixson Theorem - 1

Ch2B-13

Theorem (Poincaré-Bendixson):

```
Let \gamma^+ be a bounded positive semiorbit of \dot{x}=f(x), i.e., \gamma^+(y)=\{\phi(t,y)\mid 0\leq t<\infty\} and L^+ be its positive limit set.

If L^+ contains no e.p., then it is a periodic orbit.
```

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Poincaré-Bendixson Theorem - 2

Ch2B-14

 Lemma 2.1, Presence of Limit Cycles (Poincaré-Bendixson Criterion):

Consider $\dot{x}=f(x)$ and let M be a closed bounded subset of the plane, such that

- M contains no e.p., or contains only one e.p. such that the Jcaobian matrix $[\partial f/\partial x]$ at this point has eigenvalues with positive real parts. (Hence, the e.p. is unstable focus or node.)
- Every trajectory starting in M stays in M for all future time.

Then, M contains a periodic orbit of $\dot{x} = f(x)$.

© Feng-Li Lian 2004

Poincaré-Bendixson Theorem - 3

Ch2B-15

• Intuition:

Bounded trajectories in the plane will have to approach periodic orbits or equilibrium points as time tends to infinity.

- If M contains no e.p.,
 then it must contain a periodic orbit.
- If M contains only one e.p.
 that satisfies the stated conditions,
 then in the vicinity of that point
 all trajecotries will be moving away from it.
- Therefore, we can choose
 a simple closed curve around the e.p.
 such that the vector field on the curve
 points outward.

© Feng-Li Lian 2004