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= Nonlinear State Model

= Second-Order Systems

= Qualitative Behavior of Linear Systems
» Characteristics of eigenvalues

= Qualitative Behavior Near Equilibrium Points
 Linearization, Jacobian Matrix

= Multiple Equilibria
e Tunnel-diode circuit, pendulum

= Perturbed Linear Systems

© Feng-Li Lian 2004 Nonlinear Systems Analysis




Nonlinear State Models - 1

Ch2A-3
e In this course,
we consider dynamical systems
modeled by a finite number of coupled first-
order ordinary differential equations:
:1-71 = fl(ta L1y eeey Ly ULy oeny Up)
'/i:2 - f2(t7 L1y ey Ty ULy -eey Up)
ﬂljn = fn(t,$1,...,$n,U1,...,Up)
and
Yy = h‘l(t7 Llyeers Ly ULy onny up)
yo = ho(t,z1,.... Tn, U1, ..., Up)
Yg = hq(ta L1y eeey Ly ULy oeey Up)
e Or, let state, input, output be:
] uq Y1
T = : y U = : Yy = i !f:h9
In Up Yq
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Nonlinear State Models - 2 Ch2A-4

e Unforced state equation:

r = f(t,x)
— u =0,
— u = ~(t): a given function of time,
— u = ~v(x): a given function of the state
—u="(t )

e Autonomous or time invariant systems:
r = f(x)
e Nonautonomous or time varying systems:

e Equilibrium points:
A point z = z* in the state space
is said to be an equilibrium point
if it has the property that
whenever the state of system starts at z*,
it will remain at z* for all future time.

e For autonomous systems,
the equilibrium points are
the roots of the equation f(xz) = 0.
— isolated equilibrium points,
— continuum of equilibrium points
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Second-Order Systems - 1

Ch2A-5
e In Chapter 2, we first study second-order
autonomous systems.
e Solutions of second-order systems
— easy visualization in 2-D plane
e Key points:
1. The behavior of a nonlinear system
near equilibrium points;
2. The phenomenon of nonlinear oscilla-
tion;
3. Bifurcation.
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Second-Order Systems - 2 Ch2A-6

e State model of a 2nd-order autonomous
system:
z1 = f1(z1.22)
or x= f(x)
xp = f2(z1,22)

e Initial state, solution:

x(O)zxo:(gg), m):(

z1(t)
z2(t)

)

State plane or phase plane

a

f(x): vector field

X2
X @ x + f(x)
v = ( . ) @)=
(142
Trajectory or orbit z+ [(2) ( 141

X0

A 4

X1
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Vector Field, Phase Portrait - 1

e VVector field diagram:
Repeat the above at every point.
Example (pendulum equation w/o friction)

T, = o
xro = -—10sinzy
see Fig. 2.2
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Vector Field, Phase Portrait - 2

e The length of the arrow at a given point is
proportional to the length of f(x),
that is, \/f2(x) + f3(x)

e The vector field at a point is tangent to
the trajectory through that piont.

e S0, g — f(xg) — xa — f(za) — T

e Phase portrait of (2,1)-(2.2): the family of
all trajectories or solution curves.

e Since the time t is suppressed
in a trajectory, a trajectory gives
only the qualitative, but not quantitative,
behavior of the associated solution.

Ch2A-8
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Qualitative Behavior of Linear Systems (2.1) Ch2A-9
Linearization Changelof Coordinate
at the E.P. =Mz
Jr=M"1AM
e Nonlinear Systems: - e Linear Systems: — e In z-coordinate:
z = f(x) T = Az z = Jrz
Z
i) /\ 2
T2 22(v2)
> 1 > 7
1 %Z 1(v1) -
> aj].
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Qualitative Behavior of Linear Systems Ch2A-10

e Consider the linear time-invariant systems:

i = Az, A€ R%%?

e Solution for a given initial state xg is:
z(t) = Mexp(Jrt)M Lz
where

— Jp is the real Jordan form of A,

— M is a real nonsingular matrix
such that M~ 1AM = J,.

e Depending on the eigenvalues A\; > of A,
the real Jordan form may take one of three
forms:

— A1,2 are real and distinct: 0 A

A1 o}

LAk
— A1,2 are real and equal: [ 0 } ,

a —f3
B «

k is either O or 1.

— A1,2 = a=x jB are complex:
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Qualitative Behavior of Linear Systems

e Consider the following 4 cases:
1. Both eigenvalues are real: A1 # A» # 0.

2. Complex eigenvalues: A1 o> = a + jj.

3. Nonzero multiple eigenvalues:
AM=X=A#0.

4. One or both eigenvalues are zero.

e Qualitative behavior of equilibrium points:
— node: stable and unstable

— saddle:
— focus: stable and unstable

— center:
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Case 1: Both eigenvalues are REAL: A, \=A,\=0

e M = [vy,v9], v; is the real eigenvectors
associated with ;.

e By the chage of coordinates z = M1z,
it becomes a system of two decoupled
first-order differential equations:

21 = A12z1, 22 = A2

e Solution (with initial state (z1g.220)) is:

At Aot

z1(t) = z10e 22(t) = zppe

e Eliminating t, we obtain:

2 = ey, ¢ = 200/(210)2/M

e The phase portrait of the system is given
by the family of curves generated from the
above equation.

e The shape of the phase portrait depends
on the signs of A;.

Ch2A-12
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Case 1.1: Both eigenvalues are NEGATIVE - 1 Ch2A-13
e )1, are negative (let \» < A1 < 0):
— Both ¢ tend to zero as ¢t — oo.
— e tends to zero faster than e
because Ao < X1 < 0.
— e*2(vp): fast eigenvalue (eigenvector),
e M(v1): slow eigenvalue (eigenvector).
- )\2!)\1 >1
— The slope of the curve:
dzp — Cﬁzg(/\z/h)—l]
dzq A1l
— (A2/A1)—1>0:
the slope — 0 as |z;| — O,
(tangent to the z; axis),
the slope — o as |z1| — o©
(parallel to the zp axis).
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Case 1.1: Both eigenvalues are NEGATIVE - 2 Ch2A-14
e )1, are negative (let \» < A1 < 0):
— In the 1 — xo plane,
trajecotry tagent to the slow eigenvec-
tor vy as approach the origin,
trajecotry parallel to the fast eigenvec-
tor vy as far from the origin.
— x =0 is called a stable node.
22 XE VE
Y1
Zq | X1

(a)
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Case 1.2: Both eigenvalues are POSITIVE

e )1, Ao are positive:

— The phase portrait will retain the charc-

ter of the case of stable node,

— but with the trajectory directions

reversed,

— since et and e*2! grow exponentially as

t increases.

— x = 0 is an unstable node.

47

V1

(b)

4

Ch2A-15
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Case 1.3: Eigenvalues have OPPOSITE signs

e )\, Ao have oppositive signs:

(let Ao <0< A7)

— Ast—0, el 5o, while e*2t — Q

. the stable eigenvalue

A1: the unstable eigenvalue

— V9!

the stable eigenvector

v1: the unstable eigenvector

tagent to the zi-axis as |z1]| — o
tagent to the zp-axis as |z1] — O

x = 0 is saddle /' 22'

X2

‘*’2//
/’

Ch2A-16

}.

two trajecotries along zo-axis are stable
two trajecotries along zj-axis are unstable
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Case 2: COMPLEX eigenvalues - 1
e Mio=akjf

e By the chage of coordinates z = M~ 1lz:
21 = az1 — (2o, 2zp = [z1 + azs

e the solution is oscillatory

e in the polar coordinate:

r= \!z% + z%T 0 =tan! (z—g)

21
Fr=ar and 60=7

e Solution for a given initial state (rg,6g) is:

r(t) = roe®, 6(t) = 6 + Bt

e that is, a logarithmic spiral in the z1 — 22
plane

Ch2A-17
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Case 2: COMPLEX eigenvalues - 2

a <0

stable focus
center

N

oa>0
) (b)

D
Wz

unstable focus

1

Ch2A-18
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Case 3: NONZERO multiple eigenvalues - 1
e A\ =X=A%#0

e By the chage of coordinates z = M lz:

2’1 = /\21 + fi}ZQ, 22 = /\22

e Solution for a given initial state (z19.220)
is:

z1(t) = 6”(2‘10 + kzogt), 22(t) = e)‘tgzo

e Eliminating ¢, we obtain:

2[@4_@!;1 (2]
lz2o A \220/]

e Do not have the asymptotic slow-fast be-
havior

e The global qualitative behavior of the sys-
tem is determined by the type of equilib-
rium point. This is a characteristic of linear
systems, but not of nonlinear systems.

Ch2A-19
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Case 3: NONZERO multiple eigenvalues - 2

k=0
A <O A>0
/, 4 h 22 ,//
b ,,5"/ R h '
\\ /: ’\.\\. Vg :
Z ‘ 4
il % ‘ r - T\‘\ )
e ' ®)

unstable node

stable node

s

k=1
A>0
//22 ,,/"" : s
\i\/ L~
S } (I ‘
7\ 2 1/ i,
7 " i '/}_, '4 Qy N\
(a)

Ch2A-20
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Case 4: One or both eigenvalues are ZERO - 1 Ch2A-21
e key characters:
— the phase portrait is degenate
— A has a nontrivial null space A2 <0 P
/ o/ v/
— equilibrium point — equilibrium subspace ¥ v/ / 4
;L = _ _»i / 4 ,
e \{ = 0,)\> # 0 (& dim of null space = 1): % ’/f o {
— v1 spans the null space of A / oy :
(a)
— transformed system:;
21 =0, 2= A22p
) ) Ao >0
e Solution is: 7
i xz VE/,
21(t) = 210, 22(t) = 200e™?"
s s ' £
e ¢*2!: grow or decay, depending on the sign > ,7._;"’ e )./ .
of )\2 // .-’/ /
)
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Case 4: One or both eigenvalues are ZERO - 2 Ch2A-22

e A\ = 0.2 =0 (& dim of null space = 1):
— transformed system:

z1 =22, 220=0
e Solution is:
z1(t) = z10 + 2z20t,, 22(t) = 220

e 2oqt: increase or decrease, depending on
the sign of z5g
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Linearization at E.P. - 1 (2.3) Ch2A-23
e Consider the state model:

:j;']_ = .fl(a"lzw?)
51;32 = fQ(ml:ﬂ?Q)
e E.P.: p=(p1,p2).

e f1, f> are continuously differentiable.

e Expand the RHS
into its Taylor series about p:

1 = f1(p1,p2) +a11(x1 —p1) + ar2(x2 — p2) + H.O.T.

t3 = fo(p1,p2) + az1(x1 — p1) + azxz(x2 — p2) + H.O.T.

where
_ 9f1(z1,22) _ 9f1(z1,22)
R 2= T ’
e lT1=p1,22=P2 e l21=p1,22=P2
a21 = o2 G20 = r2
= , =
9711 1y 972|p1 ps
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Linearization at E.P. - 2 Ch2A-24

e Since (p1,pp) is an E.P.,
we have fi(p1,p2) = f2(p1.p2) =0

o Let yy == —pr,y2o =22 —p2
analyze the trajectory near (p1,p2).

e New state equation:
Y1 =21 = a11y1 + a1zy2 + HO.T.
y2 = @2 = az1y1 + azoy2 + H.OT.

that is, if we only consider a sufficiently
small neighborhood of the E.P.

(H.O.T.=0)
Y1 = a11y1 + a12y2
Yo = a21y1 + a22y> y= Ay
where
ai] aip [ gi gi
a21 a2 a—é 8—1,3 v—p
_ of
o 8.’13 T=p
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e How conclusive the linearization approach
is depends to a great extent on how the
various qualitative phase portraits of a lin-
ear system persis under perturbations.

e Let's examine the special case of linear per-
turbations.

e Suppose A has distinct eigenvalues
consider A+ AA
AA: 2 x 2 real matrix
its elememts have arbitrarily small magni-
tudes.

e From the purterbation theory of matrices,
the eigenvalues of a matrix depend contin-
uously on its parameters.

Jacobian Matrix Ch2A-25
. %% is called the Jacobian matrix of f(x)
A is the Jacobian matrix evaluated at the
E.P. p.
e If the origion of the linearized state equa-
tion is
(1) astable/unstable node with distinct eigen-
values,
(2) a stable/unstable focus, or
(3) a saddle point,
e Then in a small neighborhood of the E.P.,
the trajectories of the nonlinear state equa-
tion
will behave like
(1) a stable/unstable node,
(2) a stable/unstable focus, or
(3) a saddle point.
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Perturbed Linear System -> Nonlinear System - 1 Ch2A-26
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Perturbed Linear System -> Nonlinear System - 2

Ch2A-27
e That is, given an ¢ > 0O,
exist a corresponding 6 > 0
the magnitude of the perturbation < §,
the eigenvalues of A+ AA will lie in Be,
B. = open discs of radius e centered at the
the eigenvalues of A.
e Hence, after arbitrarily small perturbations,
eigenvalues of A
in open RHP remain in open RHP
in open LHP remain in open LHP
e However, when perturbated,
eigenvalues on the imaginary axis might
go into either the RHP or LHP.
‘ © Feng-Li Lian 2004 Nonlinear Systems Analysis
Perturbed Linear System -> Nonlinear System - 3 Ch2A-28

e If the equilibrium points x =0 of z = Az is
a node, focus, or saddle point,
then the equilibrium point x = 0 of
z = (A+ AA)x will be of the same type
for sufficiently small perturbations.

e It is quite different
if the equilibrium point is a center.

e The node, focus, and saddle equilibrium
points are said to be structurally stable,
while the center equilibrium point is not.

e Hyperbolic equilibrium point;
If A has no eigenvalues with zero real part,
x = 0 is said to be a hyperbolic equilibrium
point of x = Ax.
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Perturbed Linear System - 1

e A has multiple nonzero real eigenvalues:
— Infinitesimally small perturbations —
a pair of complex eigenvalues.
— A stable or unstable node would
either remain a stable or unstable node
or become a stable or unstable focus.

e A has eigenvalues at zero:
— Perturbations will move these eigenval-
ues away from zero, resulting a major
change in the phase portrait.

Ch2A-29
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Perturbed Linear System - 2

e Only one eigenvalue at zero:
—A=0—=XA=pu
i is a positive or negative real number.

— |A1] = |p| is much smaller than |A3|.

— — a node or saddle point,
depending on the signs of A» and pu.

— Since |A1]| << A2
e*2! changes much faster than e*t

a typical phase portraits of
a node and a saddle. See Fig.

— p < 0: x =0 a stable node !
/ lel/v N

2jintnm L
— p>0: z =0 a saddle point. / gl s

Ch2A-30

/ o
i / ’f//.{ : ‘J.
(a)

F

(b)
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Perturbed Linear System - 3

e Both eigenvalues are zeros:
— more dramatic

— consider the 4 possible cases of the Jor-
dan form:

0 1 u 1 w1 uo 1
-2 07| =2 p |70 |0 —p
— . positive or negative perturbation pa-
rameter

— The equilibrium points in these 4 cases
are a center, a focus, a node and a sad-
dle point, respectively.

Ch2A-31
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