Nonlinear Systems Analysis

Lecture 2

Appendix A Mathematical Preliminary

Feng-Li Lian NTU-EE Sep04 – Jan05

Outline Ch2A-2

- Space
- Vector & Matrix Norms
- Sequence
- Set
- Continuous Functions
- Differentiable Functions

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Space

Ch2A-3

- \bullet *n*-dimensional Euclidean Space, \mathbb{R}^n :
 - x_i is a real number

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$x+y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

$$ax = \begin{bmatrix} ax_1 \\ ax_2 \\ \vdots \\ ax_n \end{bmatrix}$$

$$x^T y = \sum_{i=1}^n x_i y_i$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Vector Norm - 1

- Vector Norm:
 - x is a vector
 - Norm ||x|| is a real-valued function:
 - $-||x|| \ge 0$ for all $x \in \mathbb{R}^n$, with ||x|| = 0 iff x = 0.
 - $-||x+y|| \le ||x|| + ||y||$, for all $x, y \in R^n$.
 - $||\alpha x|| = |\alpha| ||x||,$ for all $\alpha \in R$ and $x \in R^n$.
- p-norm:

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{(1/p)}$$

 $1 \le p < \infty$
 $||x||_{\infty} = \max_i |x_i|$

- 1-, 2-, ∞-norms are the three commonly used norms.
 - 2-norm is also called the Euclidean norm.

Vector Norm - 2

Ch2A-5

All p-norms are equivalent in the sense that

$$c_1||x||_{\alpha} \le ||x||_{\beta} \le c_2||x||_{\alpha}$$

 $||\cdot||_{\alpha}$ and $||\cdot||_{\beta}$ are two different p-norms and c_1 and c_2 are positive constants.

For 1-, 2-, ∞-norms,
 the inequalities take the form:

$$||x||_{2} \le ||x||_{1} \le \sqrt{n}||x||_{2}$$
$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n}||x||_{\infty}$$
$$||x||_{\infty} \le ||x||_{1} \le n||x||_{\infty}$$

• The Hölder inequality:

$$|x^Ty| \leq ||x||_p \; ||y||_p, \quad \frac{1}{p} + \frac{1}{q} = 1$$
 for all $x \in R^n, y \in R^n.$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Matrix Norm - 1

Ch2A-6

- An $m \times n$ matrix A of real elements defines a linear mapping y = Ax from R^n into R^m .
- The induced *p*-norm of *A* is defined by:

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{||x||_p = 1} ||Ax||_p$$

• For $p = 1, 2, \infty$:

$$||A||_1 = \max_{j} \sum_{i=1}^{m} |a_{ij}|$$
 $||A||_2 = \left[\lambda_{\max}(A^T A)\right]^{1/2}$
 $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

where $\lambda_{\max}(A^TA)$ is the maximum eigenvalue of A^TA .

Matrix Norm - 2 Ch2A-7

Some useful properties

$$\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_{2} \le \sqrt{m} ||A||_{\infty}$$

$$\frac{1}{\sqrt{m}} ||A||_{1} \le ||A||_{2} \le \sqrt{n} ||A||_{1}$$

$$||A||_{2} \le \sqrt{||A||_{1}} ||A||_{\infty}$$

$$||AB||_{p} \le ||A||_{p} ||B||_{p}$$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Sequence Convergence - 1

- A sequence of vectors $x_0, x_1, ..., x_k, ...$ in \mathbb{R}^n , denoted by $\{x_k\}$, is said to converge to a limit vector x if $||x_k x|| \to 0$ as $k \to \infty$.
- Or, given any $\epsilon > 0$, there is an integer N such that $||x_k x|| < \epsilon, \forall k \geq N$
- A vector x is an accumulation point of a sequence $\{x_k\}$ if there is a subsequence of $\{x_k\}$ that converges to x
- A bounded sequence {x_k} in Rⁿ
 has at least one accumulation point in Rⁿ.

Sequence Convergence - 2

Ch2A-9

• An increasing (monotonically increasing or nondecreasing) sequence of real numbers $\{r_k\}$: if $r_k \leq r_{k+1}$

• A strictly increasing sequence $\{r_k\}$: if $r_k < r_{k+1}$

- Decreasing (monotonically decreasing or nonincreasing) & strictly decreasing
- An increasing sequence of real numbers that is bounded from above converges to a real number.
- An decreasing sequence of real numbers that is bounded from below converges to a real number.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Set - 1

- A set $S \subset R^n$ is said to be open, if, for every vector $x \in S$, one can find an ϵ -neighborhood of x $N(x,\epsilon) = \{z \in R^n \mid ||z-x|| < \epsilon\}$ such that $N(x,\epsilon) \subset S$.
- A set S is closed iff its complement in \mathbb{R}^n is open.
- A set S is bounded if there is r > 0 such that $||x|| \le r$ for all $x \in S$.
- A set S is compact if it is closed and bounded.
- A point p is a boundary point of a set S
 if every neighborhood of p contains at least
 one point of S and one point not belonging
 to S.

Set - 2 Ch2A-11

 The set of all boundary points of S, denoted by ∂S, is called the boundary of S.

- A closed set contains all its boundary points.
- The interior of a set S is $S \partial S$.
- An open set is equal to its interior.
- The closure of a set S, denoted by \bar{S} , is the union of S and its boundary.
- A closed set is equal to its closure.
- A open set S is connected
 if every pair of points in S can be joined by
 an arc lying in S.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Set - 3 Ch2A-12

- A set S is called region
 if it is the union of an open connected set
 with some, none, or all of its boundary
 points.
- If none of the boundary points are included, the region is called an open region or domain.
- A set S is convex if for every $x,y \in S$ and every real number θ , $0 < \theta < 1$, the point $\theta x + (1 \theta)y \in S$.
- If $x \in X \subset R^n$ and $y \in Y \subset R^m$, we say that (x,y) belongs to the product set $X \times Y \subset R^n \times R^m$.

Continuous Functions - 1

Ch2A-13

- f: S₁ → S₂ is that
 a function f maps a set S₁ into a set S₂.
- A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be continuous at a point xif $f(x_k) \to f(x)$ whenever $x_k \to x$.
- Equivalently, f is continuous at a x if, given $\epsilon > 0$, there is $\delta > 0$ such that $||x y|| < \delta \Rightarrow ||f(x) f(y)|| < \epsilon$.
- A function f is continuous on a set S
 if it is continuous at every point of S.
- f is uniformly continuous on S if, given $\epsilon > 0$, there is $\delta > 0$ (dependent only on ϵ) such that the inequality holds for all $x,y \in S$. That is, the same constant δ works for all points in the set.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Continuous Functions - 2

Ch2A-14

- If f is uniformly continuous on a set S, then it is continuous on S.
 The opposite statement is not true in general.
- However, if S is a compact set, then continuity and uniform continuity on S are equivalent.
- The function $(a_1f_1 + a_2f_2)(\cdot) = a_1f_1(\cdot) + a_2f_2(\cdot)$ is continuous for any two scalars a_1 and a_2 and any two continuous functions f_1 and f_2 .
- If S_1, S_2, S_3 are any sets and $f_1: S_1 \to S_2$ and $f_2: S_2 \to S_3$ are functions, then the function $f_2 \circ f_1: S_1 \to S_3$ is called the composition of f_1 and f_2 and defined by $(f_2 \circ f_1)(\cdot) = f_2(f_1(\cdot))$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Continuous Functions - 3

Ch2A-15

• The composition of two continuous functions is continuous.

- If $S \subset \mathbb{R}^n$ and $f: S \to \mathbb{R}^m$, then the set of $f(x), x \in S$, is called the image of S under fand is denoted by f(S).
- If f is a continuous function defined on a compact set S, then f(S) is compact; hence, continuous functions on compact sets are bounded.
- If f is real valued, that is, $f: S \to R$, then there are points p and qin the compact set Ssuch that $f(x) \le f(p)$ and $f(x) \ge f(q)$, $\forall x \in S$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Continuous Functions - 4

- If f is a continuous function defined on a connected set S, then f(S) is connected.
- ullet A function f defined on a set Sis said to be one to one on Sif whenever $x, y \in S$, and $x \neq y$, then $f(x) \neq f(y)$.
- If $f: S \to R^m$ is a continuous, one-to-one function on a compact set $S \subset \mathbb{R}^n$, then f has a continuous inverse f^{-1} on f(S).
- The composition of f and f^{-1} is identity, that is, $f^{-1}(f(x)) = x$.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Continuous Functions - 5

Ch2A-17

- A function $f: R \to R^n$ is said to be piecewise continuous on an interval $J \subset R$ if for every bounded subinterval $J_0 \subset J$, f is continuous for all $x \in J_0$, except possibly at a finite number of points where f may have discontinuities.
- At each point of discontinuity x_0 , the right-side limit $\lim_{h\to 0} f(x_0+h)$ and the left-side limit $\lim_{h\to 0} f(x_0-h)$ exist; that is, the function has a finite jump at x_0 .

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Differentiable Functions - 1

Ch2A-18

- A function $f: R \to R$ is said to be differentiable at x if the limit $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ exists.
- The limit f'(x) is called the derivative of f at x.
- A function $f: R^n \to R^m$ is said to be continuously differentiable at x_0 if the partial derivatives $\partial f_i/\partial x_j$ exist and are continuous at x_0 for $1 \le i \le m, 1 \le j \le n$.
- A function f is continuously differentiable on a set S
 if it is continuously differentiable at every point of S.

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Differentiable Functions - 2

Ch2A-19

For a continuous differentiable function

$$\begin{array}{l} f:R^n\to R,\\ \text{define } \frac{\partial f}{\partial x}=\left[\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n}\right]. \end{array}$$

- And, the gradient vector as $\nabla f(x) = \left[\frac{\partial f}{\partial x}\right]^T$.
- For a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$,

the Jacobian matrix
$$\left[\frac{\partial f}{\partial x}\right]$$
 is $\left[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \frac{\partial f_i}{\partial x_j} & \cdot \\ \cdot & \cdot & \cdot \end{array}\right]$

© Feng-Li Lian 2004

Nonlinear Systems Analysis

Differentiable Functions - 3

- Suppose $S \subset \mathbb{R}^n$ is open,
 - f maps S into R^m ,
 - f is continuously differentiable at $x_0 \in S$,
 - g maps an open set containing f(S) into
 - \mathbb{R}^k , and
 - g is continuously differentiable at $f(x_0)$
- Then the mapping of h of S into \mathbb{R}^k , defined by h(x) = g(f(x)),
 - is continuously differentiable at x_0 and
 - its Jacobian matrix is given by
 - the chain rule $\frac{\partial h}{\partial x}\Big|_{x=x_0} = \frac{\partial g}{\partial f}\Big|_{f=f(x_0)} \frac{\partial f}{\partial x}\Big|_{x=x_0}$