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Problem 3-1:

[Ref: HW3_ 3%+ % r07921012 &+ . _DCS_HW3_107 0412_zTransform & sampling]

(@)

When the different equation of discrete time system is given, the pulse-transfer
function can be derived in z-Transform format. In advance, substitute the input in z-
Transform and take the inverse z-Transform. Finally, The output sequence will be

derived.

The difference equation:

y[k + 2] — 1.5y[k + 1] + 0.5y[k] = u[k + 1] (1)

For initial condition, let k=-1:

y[1] = 1.5y[0] + 0.5y[—1] = u[0] )

Substitute y[0], y[-1] into (2), derive y[1]:

y[1] = 1.25

Consider the initial condition, the zTransform will be:

ylk +2] - z2(Y(2) — y[0] — z~y[1])
y[k+1] = z(Y(z) — y[0D)

3)
yIk] = Y(2)
u[k + 1] - z(U(z) — u[0])
where
y[1]=1.25,y[0] =0.5, y[-1] =1,u[0] =1
Substitute (3) into (1) and simplify, then we can derive the equation:
1
Y(z) =z CESICEY U() + 052 —= (4)
Y@= [Z :202.5 * Zz—zl v@ + O'Sz —ZO.S ©)
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The pulse-transfer function is:

Y(2) vA
= = 7
‘D=0 T aomeE=-1 ()
And, its poles and zeros are: poles: z=0.5, 1, zeros: z=0.
(b)
For the following input function:
Z
U@ = |—] ®)
Finally, the output sequence becomes:
-2z 2z Z Z
= 9
Y [2—0.5+Z—1 [Z—l]+0'52—0.5 ®)
_ 7 05— (10)
"~ [(z-0.5)(z—1)2 ' (z — 0.5)
05— (—2) e (2) 5 (11)
= k — * ¥ —
z—05 T z-05 z—1 (z —1)2

Finally, the output sequence is derived by inverse zTransform and simplification:

y[k] = (0.5)% D + (0.5)*+D 4 (=2)(D*V + 2%k (12)

= (0.5)* D1k — 1] + (0.5)**D1[k] — 2 * 1[k — 1] + 2k * 1[k] (13)
Moreover, (11) can be validated by initial conditions:

y[—1] = (0.5)C2 + (0.5)©@ + (=2)(DED + 2+ (1) =1 (14)

y[0] = (0.5)Y + (0.5 + (=2)(1)V + 2% (0) = 0.5 (15)

y[1] = (0.5)©@ + (0.5)@ + (=2)(1)@ + 2% 1 = 1.25 (16)
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(c) poles: z=0.5 is for (0.5)%),
poles: z=1 is for (1)® = 1.
The effect of z can be considered as the weighting among different kernel (or basis)
functions or between one function and its delayed function.

For example, (z-b)/(z-a) = z/(z-a) - b/(z-a) = z/

_Y(@2) (z—0)
(@ = T o =h

A B

“G-a  @-b

z
= Az 1 + Bz 1

VA
(z—-a) (z-Db)

2> A(a)® D 4+ B(p)*-D

OR
Y@ (z—o0
G(2) = U(z) (z—a)
oz c
(z-a) (-9
Z v/

-1

=(z—a)_CZ (z—a)

> (@® — c(a)*kD

These features can be illustrated by simulation results in next example.
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Problem 3-2:

[Ref: HW3_ 3%+ % r07921012 &+ . _DCS_HW3_107 0412_zTransform & sampling]

In discrete time system, the poles and zeros in z-Transform influence the properties
of system, such as rising time, settling time, and overshoot etc. In this problem, the
relationship between the percentage overshoot and the locations of poles and zeros are
discussed.

The system is described in z-Transform as:

z+b
(1+b)(z2—11z+a)

(2-1)
Where

a € [0.3,0.5],b € [—0.75, 0.75]
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After executing the [2: Lian Response_01 pole.m 2019] given by teacher, the Figure

2-1 and Figure 2-2 are derived.

Step Response of (z+b)/((1+b)*(z2-1.12+0.4)

1r E
O 1 1 1 1 |
0 5 10 15 20 25
Time
Figure 2-1.  Step response for different pairs of a and b.
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Pole-Zero Map
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Figure 2-2. Poles and zeros for different
MATLAB.

However, Figure 2-2 doesn’t show a

results.

0675 4nT |
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Real Axis

pairs of a and b. The overshoot is derived for each pairs in

Il of pairs of a and b, the following will show all the

When a = 0.3, b € [-0.75,—0.5,0,0.5,0.75]:

Step Response of (z+b)l((1+b)“(zz-1 1z+0.4)
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Figure 2-3. Whena=0.3 and b =-0.75,
zeros in z-Transform.

(a) notes that step response, and (b) notes the poles and




HW 3: z Transform & Sampling

Digital Control Systems, Spring 2021, NTU-EE

Name: %% ¥ %

Date: 4/10, 2021

Step Response of (z+b)l(£1+b)“(zz-1 .12+0.4)
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Figure 2-4 When a=0.3 and b = -0.5, (a) notes that step response, and (b) notes the poles and zeros

Figure 2-5.

in z-Transform.

Step Response of (z+b)l(£1+b)“(zz-1 .12+0.4)
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When a = 0.3 and b = 0, (a) notes that step response, and (b) notes the poles and zeros in

z-Transform.

Step Response of (z+b)/((1+b)'(zz-1 .12+0.4)

5 10 15 20

(@)

25

Pole-Zero Map

1 — —
~ D.Sﬂﬂ'sfﬂgﬂﬂﬂ‘ T~
0.8 07em _ og'z%’f ]
‘ R ]
06 0:4
0.5
0.4 08 1
2 08
% 02 06
T !
© 0 !
c
g |
£ 02 \o.9n/T
04 B B
0.87/T
-06 ) [N 1
07T 0.3 J
-0.8 . : . P
067 o QdnlT -
A —
-1 05 0 05 1

Real Axis

(b)

Figure 2-6 When a= 0.3 and b = 0.5, (a) notes that step response, and (b) notes the poles and zeros

in z-Transform.
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Figure 2-7. When a = 0.3 and b = 0.75, (a) notes that step response, and (b) notes the poles and zeros
in z-Transform.

When a = 0.4, b € [-0.75,—0.5,0,0.5,0.75]:

Pole-Zero Map
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Figure 2-8. When a = 0.4 and b = -0.75, (a) notes that step response, and (b) notes the poles and

zeros in z-Transform.
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Figure 2-9. When a =0.4 and b = -0.5, (a) notes that step response, and (b) notes the poles and zeros
in z-Transform.
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Step Response of (z+b)l((1+b)“(zz-1 1z+0.4)
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Figure 2-10. When a= 0.4 and b = 0, (a) notes that step response, and (b) notes the poles and zeros

in z-Transform.

Step Response of (z+b)l((1+b)“(zz-1 1z+0.4)
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Figure 2-11.
in z-Transform.

Step Response of (z+b)/((1+b)'(zz-1 1z+0.4)
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Figure 2-12.
zeros in z-Transform.
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When a = 0.4 and b = 0.5, (a) notes that step response, and (b) notes the poles and zeros
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When a = 0.4 and b = 0.75, (a) notes that step response, and (b) notes the poles and
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When a = 0.5, b € [-0.75,—0.5,0,0.5,0.75]:
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Figure 2-13.  When a= 0.5 and b =-0.75, (a) notes that step response, and (b) notes the poles and

zeros in z-Transform.
Pole-Zero Map

Step Response of (z+b)l((1+b)“(zz-1.1z+0.4) 1

4r ")V)G:SWH'SHH.liTrFF\"-\
08+ : :
a5l 0._7:7:T ‘ ! 0824‘””.
"
3k 0.5
04r 0.6
u 04
25+ 5 02F 0.9
3 =
2, § oro
9] S
@ L
15F £ 0?2
041 . e T
! 0.87/T
06 - _ - .
05} P 1
o8l Q7w 037;/1'
.
. ‘ ‘ ‘ ‘ ‘ 1 L Y s
0 5 10 15 20 25 - A o5 P 05 1
Time Real Axis

(@) (b)
Figure 2-14. When a= 0.5 and b = -0.5, (a) notes that step response, and (b) notes the poles and

zeros in z-Transform.
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Figure 2-15. When a = 0.5 and b = 0, (a) notes that step response, and (b) notes the poles and zeros
in z-Transform.
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Figure 2-16.  When a= 0.5 and b = 0.5, (a) notes that step response, and (b) notes the poles and zeros

in z-Transform.
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Figure 2-17.  When a= 0.5 and b = 0.75, (a) notes that step response, and (b) notes the poles and
zeros in z-Transform.
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The overshoot corresponding to different pairs of a and b is shown in TABLE 2-1:

TABLE 2-1

OVERSHOOT CORRESPONDENCE

Value of a Value of b Overshoot (%)
0.3 -0.75 14.8
0.3 -0.5 0
0.3 0 0
0.3 0.5 0
0.3 0.75 0
04 -0.75 62.2
0.4 -0.5 14.3
04 0 6.2
04 0.5 6.1
0.4 0.75 6.1
0.5 -0.75 115.6
0.5 -0.5 41.1
05 0 21.8
05 0.5 19.0
0.5 0.75 19.4

The locations of poles and zeros differ because of the different pairs of a and b.

Therefore, the systems result in the different step responses. The TABLE 2-1 shows that

the increment of a makes the overshoot larger and the increment of b makes the overshoot

smaller.

12
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Problem 3-3

[Ref: HW3_%|# 2 Chung-En Liu_Digital Control_HW3_20190412]
The main issue of this problem is to find the magnitude of the spectrum of a signal
that is sampled at different rates.
The horizontal axis refers to the frequency of the signal, while the vertical axis refers
to the magnitude of the signal. The given signal is a triangular wave, with magnitude one
2r

and frequency of 20 rad/s. It is also known that o = 24f = T F

In part (a), the sampling time is T =i—g. Which means that (rad/s). From the graph

given in the problem, we can roughly sketch 3 triangle waves as in Figure 1.4-1:

Magnitude of the Spectrum

15 T

S(w)

-60 -40 -20 L] 20 40 (21

w(rad/s)

Figure 1.4-1. Three triangle waves are produced, each of magnitude 1 and a period of 20 rad/s.
Aliasing occurs as the sampling time is shorter than the period of each triangular wave.
The overlapped regions all have summed magnitude of one.

13
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Since the period for each cycle is longer than the sampling rate, we see that aliasing
occurs between adjacent triangular waves. At @« =0, we can see that the peak of the
second wave meets with the lowest value, which is zero, of the first and third waves. At
@ =5, we can see that both the second and the third wave have values at 0.5, which means
the sum of the value at that point is equal to one. Similarly, for each value of @, the sum
of the values are equal to one. So, by summing up the overlapped areas, we get the

magnitude of the spectrum as in Figure 1.4-2:

Magnitude of the Spectrum

d(w)

0.5

1 1 1 1 1
-60 -40 -20 0 20 40 60

w(rad/s)

Figure 1.4-2. The aliased result of the magnitude of the spectrum for part (a).
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In part (b), the sampling time is T =§—g. This means that a)zg—z = 20 (rad/s),

(70)

which is equal to the period of each triangular wave provided in the problem set. Thus,
we can know that the start and end point of adjacent triangular waves meet at value 0.
The peak value of the triangular waves is one and situated at @ that are multiples of 20.

This sampling frequency is also known as the Nyquist Frequency. We can then roughly

sketch the magnitude of the spectrum as below in Fig 1.4-3:

Magnitude of the Spectrum
15 T T T T
1l 4
3
i
us - 8
0 1 1 1 1 1
50 40 2 ] ] 40 ]
w(rad/s)

Figure 1.4-3. Three triangle waves are produced, each of magnitude 1 and a period of 20 rad/s. Since
the sampling distance is equal to the period of each triangular wave, the start and end
point of adjacent waves meet at 0. The peak value of the triangular waves is one and
situated at ¢ that are multiples of 20.
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As In part (c), the sampling timeis T = % . Thismeans that w = g—z =50 (rad/s),
(5)

which is way larger than the period of each triangular wave. Thus, adjacent triangular
waves are separated, with the peak value being one and situated at @ that are multiples

of 50. We can then roughly sketch the magnitude of the spectrum as below in Fig 1.4-4:

Magnitude of the Spectrum
15 T T T T
1k i
3
23
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0 | 1 1 1
60 40 2 ] 2 a0 ]
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Figure 1.4-4. Three triangle waves are produced, each of magnitude 1 and a period of 20 rad/s. Since
the sampling distance is much larger than the period of each triangular wave, adjacent
waves are far apart from each other, with the peak value being one and situated at @
that are multiples of 50.

From the above results, we can see how sampling rates effect the magnitude of the
spectrum. If the sampling rate is too high, aliasing occurs, resulting in a change in the

magnitude of the spectrum. As for lower sampling rates, effects will not be visible.
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