Final Exam, Control System, 108-2 (2020)
Date: Friday, June 12, 2020. Time: 2pm-4pm.
Closed books, closed notes, no calculators. Only pens and erasers are allowed.

[Helpful formula]														
$\begin{aligned} & \lim _{s \rightarrow \infty} s F(s) \\ & \lim _{s \rightarrow 0} s F(s) \end{aligned}$			$f\left(0^{+}\right)$ $\lim _{t \rightarrow \infty} f(t)$				Initial Value Theorem Final Value Theorem							
$t_{r} \cong \frac{1.8}{w_{n}}, t_{p}=\frac{\pi}{w_{d}}, M_{p}=e^{\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}}, t_{s}=\frac{4.6}{\zeta w_{n}}=\frac{4.6}{\sigma}$														

Fig. A Overshoot versus damping ratio for the second-order system and maximum phase increase for lead

Fig. B Transient-response overshoot (Mp) and frequency-response resonant peak(Mr) versus PM
for

$$
T(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Part A．［60\％］Find the best choice．（評分標準：只需寫出正確選項）

Figure 1 and Figure 2 show＂partial＂root loci of two different transfer functions．Note that＂partial＂means that some zeros or poles might exist in the area outside the visible area．
Figure 1

1．For Figure 1，please find the best possible transfer function：
（A）$\frac{s+1}{s^{2}(s+4)}$
（B）$\frac{s+1}{s^{2}(s+9)}$
（C）$\frac{s+1}{s^{2}(s+15)}$
（D）$\frac{s+1}{s(s+12)}$

2．For Figure 2，please find the best possible transfer function：
（A）$\frac{s+1}{s^{2}(s+4)}$
（B）$\frac{s+1}{s^{2}(s+9)}$
（C）$\frac{s+1}{s^{2}(s+15)}$
（D）$\frac{s+1}{s(s+12)}$

3．For Figure 2，what is correct relationship among those Ki＇s：
（A） $\mathrm{K} 1=\mathrm{K} 2$
（B） $\mathrm{K} 2>\mathrm{K} 3$
（C） $\mathrm{K} 4>\mathrm{K} 5$
（D）K3＞K4

Figure 3 and Figure 4 show "partial" root loci of two different transfer functions. Note that "partial" means that some zeros or poles might exist in the area outside the visible area.
Figure 3
4. For Figure 3, please find the best possible transfer function:
(A) $\frac{s+3}{s^{2}}$
(B) $\frac{s+3}{s^{2}(s+4)}$
(C) $\frac{s+3}{s^{2}(s+9)}$
(D) $\frac{s+3}{s^{2}(s+20)}$
5. For Figure 4, please find the best possible transfer function:
(A) $\frac{s+3}{s^{2}}$
(B) $\frac{s+3}{s^{2}(s+4)}$
(C) $\frac{s+3}{s^{2}(s+9)}$
(D) $\frac{s+3}{s^{2}(s+20)}$
6. For Figure 4, what is correct relationship among those Ki's:
(A) K $1>\mathrm{K} 5$
(B) $\mathrm{K} 2>\mathrm{K} 5$
(C) $\mathrm{K} 2>\mathrm{K} 3$
(D) K3>K4

Figure 5 and Figure 6 show the Bode plots of the unit-feedback response of two different second-order systems.
Figure 5 migurn
7. For Figure 5, please find the best possible transfer function
(A) $\frac{10}{s\left(s^{2}+0.4 s+4\right)}$
(B) $\frac{10}{s\left(s^{2}+0.2 s+10\right)}$
(C) $\frac{10}{s\left(s^{2}+4 s+4\right)}$
(D) $\frac{10}{s\left(s^{2}+2 s+10\right)}$
8. For Figure 6, please find the best possible transfer function:
(A) $\frac{10(s+10)}{(s+10)(s+100)}$
(B) $\frac{10(s+1)}{(s+10)(s+100)}$
(C) $\frac{100(s+10)}{(s+1)(s+100)}$
(D) $\frac{(s+10)}{(s+1)^{2}}$
9. For Figure 5, what is the possible gain margin:
(A) $\quad-42 \mathrm{~dB}$
(B) 42 dB
(C) 18 dB
(D) -18 dB
10. For Figure 5, what is the possible phase margin:
(A) -20 deg
(B) -80 deg
(C) 40 deg
(D) 80 deg

Figure 7 shows the Bode plot of one system with different feedback gains, that is, $\mathrm{K}=0.1$, 2 , and 10 , respectively.

Figure 7

11. For Figure 7, what is the possible gain margin for $\mathrm{K}=0.1$:
(A) -10 dB
(B) 1 dB
(C) 25 dB
(D) 80 dB
12. For Figure 7, what is the possible phase margin for $K=2$:
(A) -90 deg
(B) -20 deg
(C) 0 deg
(D) 90 deg
13. For Figure 7, if we want to choose a gain K for the system such that it is stable, what is the suitable option?
(A) $\mathrm{K}=0.5$
(B) $\mathrm{K}=2.5$
(C) $\mathrm{K}=5$
(D) $\mathrm{K}=10$

Consider the block diagram shown in Figure 8.

Figure 9 shows the Bode plot of the systems with different feedback gains and compensators, that is, $\mathrm{KG}(\mathrm{s}), \mathrm{K} 1 \mathrm{Dc} 1(\mathrm{~s}), \mathrm{K} 2 \mathrm{Dc} 2(\mathrm{~s})$, respectively.

Figure 9

14. For Figure 9, what is the best possible form of $K_{2} D_{c 2}(s)$:
(A) $10 \frac{\frac{s}{2}+1}{\frac{s}{20}+1}$
(B) $5 \frac{\frac{s}{2}+1}{\frac{s}{10}+1}$
(C) $10 \frac{\frac{s}{10}+1}{\frac{s}{2}+1}$
(D) $\quad 5 \frac{\frac{s}{2}+1}{\frac{8}{4}+1}$
15. For Figure 9, what is possible phase lead with $K_{2} D_{c 2}(s)$
(A) 2 deg
(B) 30 deg
(C) 60 deg
(D) 90 deg
16. For Figure 9, what is the crossover frequency of $\mathrm{K}_{1} \mathrm{D}_{\mathrm{C} 1} \mathrm{G}(\mathrm{s})$
(A) $\omega_{\mathrm{c}}=1$
(B) $\omega_{\mathrm{c}}=6$
(C) $\omega_{\mathrm{c}}=20$
(D) $\omega_{\mathrm{c}}=60$

Consider the system shown in Figure 8 where $\quad G(s)=\frac{A}{s(s / 2+1)(s / 5+1)}$ and the open-loop bode diagram is shown in Figure 10.

Figure 10

17. For Figure 10, the possible value of A is:
(A) $\mathrm{A}=1$
(B) $\mathrm{A}=4$
(C) $\mathrm{A}=10$
(D) $\mathrm{A}=20$
18. If we want to have a phase margin > 55 degrees, and the compensator is

$$
D_{c}(s)=\frac{T_{D} s+1}{\alpha T_{D} s+1} \text { we can choose the value of } 1 / \alpha \text { to be: }
$$

(A) 2
(B) 6
(C) 20
(D) 40

Consider the following system:

Figure 11

where $\mathrm{G}(\mathrm{s})=0.9 / \mathrm{s}^{2}, \mathrm{H}(\mathrm{s})=2 /(\mathrm{s}+2)$, and the compensation is the PID controller of the form: $D_{c}(s)=\frac{K}{s}\left[\left(T_{D} s+1\right)\left(s+\frac{1}{T_{I}}\right)\right]$

Figure 12 shows the Bode plot of the systems with different PID controllers with different PID gains (K's, TD's, TI's), that is, Dc1(s), Dc2(s), and Dc3(s), respectively.

Figure 12

19. For Figure 12, what is possible values of the controller $\mathrm{D}_{\mathrm{C} 2}$:
(A) $1 / \mathrm{T}_{\mathrm{D}}=1,1 / \mathrm{T}_{\mathrm{I}}=0.2$
(B) $1 / \mathrm{T}_{\mathrm{D}}=10,1 / \mathrm{T}_{\mathrm{I}}=5$
(C) $1 / \mathrm{T}_{\mathrm{D}}=10,1 / \mathrm{T}_{\mathrm{I}}=1$
(D) $1 / \mathrm{T}_{\mathrm{D}}=0.1,1 / \mathrm{T}_{\mathrm{l}}=0.005$
20. For Figure 12, if $\mathrm{PM}=60$ is needed, which controller will be suitable:
(A) $\mathrm{K}=10$ and $\mathrm{D}_{\mathrm{C} 2}$
(B) $\mathrm{K}=0.5$ and D_{C}
(C) $\mathrm{K}=0.5$ and $\mathrm{D}_{\mathrm{C} 1}$
(D) $\mathrm{K}=0.05$ and $\mathrm{D}_{\mathrm{C} 1}$

Part B. [40\%] Write the answers for the problems.

1. (24%)

For the system in the figure where
$G(s)=\frac{100}{s(s+10)^{2}}$

(a) Sketch the root locus
(a)
(b) Sketch the Bode plot
(c) Sketch the Nyquist plot
2. (16%)

For the system shown in the previous problem, where
$G(s)=\frac{100(s+1)}{(s+10)(s+20)(s+100)}$
(a) Sketch the root locus
(b) Sketch the Bode plot

