Spring 2021

數位控制系統 Digital Control Systems

DCS-31 State Space Design

Feng-Li Lian NTU-EE Feb – Jun 2021

Introduction: Model vs Analysis vs Design

Feng-Li Lian © 2021 DCS31-SSDesign-2

- Plant (DT):
 - Input-Output Model:

$$\frac{Y_d(z)}{U_d(z)} = G_d(z) = \frac{B_d(z)}{A_d(z)}$$

State-Space Model:

$$\mathbf{x}[k+1] = \mathbf{F}\mathbf{x}[k] + \mathbf{H}u[k]$$
$$y[k] = \mathbf{C}\mathbf{x}[k] + \mathbf{D}u[k]$$

• design $u[k] \Rightarrow$

unstable \rightarrow stable

System Properties:

➢ Stability

- Controllability (and Reachability)
- Observability (and Detectability)

stable \rightarrow more stable

from y[k] to estimate $\mathbf{x}[k]$

Outline

- Control System Design
- Regulation by State Feedback
- Observer Design
- Output Feedback
- Tracking Problem

Control System Design:

- Load disturbance (actuator)
- Measurement noise (sensor)
- Process disturbance (un-modeled dynamics)

Control Objects:

- ➢Regulation:
 - Reduction of load disturbances
 - ✓ Fluctuations by measure noise

≻Tracking:

Major Ingredients of a Design Problem:

- Purpose of the system
- Process model
- Model for disturbance
- Model variants and uncertainties
- Admissible control strategies
- Design parameters

Block Diagram of a Typical Control System:

• The Process:

$$\frac{d}{dt}\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

Discrete-time model with <u>h</u>.

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$

where $\mathbf{F} = e^{\mathbf{A}h}$ and $\mathbf{H} = \int_0^h e^{\mathbf{A}s} ds \mathbf{B}$

Disturbances:

Impulse signals: irregularly, widely spread, etc.
 Step signals:
 Ramp signals:
 Sinusoidal signals:

Process Uncertainties:

➢In the elements of A, B, C, D or F, H, C, D

- Design Criteria:
 - \geq Regulation:

Bring the state to zero after perturbations \checkmark The rate of decay of state \rightarrow C.L. poles

>Tracking:

 \checkmark From commands to states \rightarrow "model"

Admissible Controls:

When all states are measured w/o errors: Linear feedback control law $\cdots \quad \begin{array}{c} k_n \\ \vdots \\ \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ \end{array} \right]$

$$u(k) = -\mathbf{K} \mathbf{x}(k) = -\begin{bmatrix} k_1 & k_2 \end{bmatrix}$$

- Design Parameters :
 - Sampling periodDesired C.L. poles

Time histories of states and controls
 Magnitude of control signals
 Speed at which the system recovers from a disturbance

Feng-Li Lian © 2021 DCS31-SSDesign-11

The C.T. Model:

$$\frac{d}{dt}\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

The D.T. Model: (given h)

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$

Characteristic Equation:

$$\mathbf{F} \quad \Rightarrow \quad z^n + a_1 z^{n-1} + \dots + a_n = 0$$

System Model and Characteristic Equation:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$

 $A(z) = z^n + a_1 z^{n-1} + \dots + a_n = 0$

If the system is "Controllable" the system is in the Controllable Canonical Form:

$$\mathbf{x}(k+1) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & & 0 \\ 0 & 1 & & & \\ \vdots & \ddots & & \\ 0 & & 1 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

 $y(k) = [b_1 b_2 \cdots b_n] \mathbf{x}(k)$

The State Feedback Law:

$$u(k) = -\begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = -\mathbf{K} \mathbf{x}(k)$$

Then:

 $\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}(-\mathbf{K}\mathbf{x}(k))$ $= (\mathbf{F} - \mathbf{H} \mathbf{K}) \mathbf{x}(k)$ $= \begin{bmatrix} -(a_1+k_1) & -(a_2+k_2) & \cdots & -(a_{n-1}+k_{n-1}) & -(a_n+k_n) \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \mathbf{x}(k)$

• Closed-Loop Characteristic Equation: det ($\lambda I - (F - HK)$) = $\lambda^n + (a_1 + k_1)\lambda^{n-1} + \dots + (a_n + k_n)$

Desired Characteristic Equation:

 $p_i = a_i + k_i$

 $k_i = p_i - a_i$

$$\mathbf{P}(z) = \lambda^n + p_1 \lambda^{n-1} + \dots + p_n$$

Then

$$u(k) = -\mathbf{K} \mathbf{x}(k)$$

This is the Pole Placement

OR, the Eigenvalue Assignment

 $eig(F) \rightarrow eig(F - HK)$

 $\mathbf{A}(z) \rightarrow \mathbf{P}(z)$

Feng-Li Lian © 2021 DCS31-SSDesign-15

That is,

$$\mathbf{x}(k+1) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & & 0 \\ 0 & 1 & & \\ \vdots & \ddots & \\ 0 & & 1 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$
$$u(k) = -\begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$\mathbf{x}(k+1) = \begin{bmatrix} -p_1 & -p_2 & \cdots & -p_{n-1} & -p_n \\ 1 & 0 & & 0 \\ 0 & 1 & & \\ \vdots & \ddots & & \\ 0 & & 1 & 0 \end{bmatrix} \mathbf{x}(k)$$

Now, we have (in controllable canonical form):

$$\mathbf{x}(k+1) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & & & 0 \\ 0 & 1 & & & \\ \vdots & & \ddots & & \\ 0 & & & 1 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

 $\mathbf{x}_c(k+1) = \mathbf{F}_c \mathbf{x}_c(k) + \mathbf{H}_c u(k)$

For any other SS forms:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$

• Assume that exiting a nonsingular matrix **T**: $\mathbf{x}_c(k) = \mathbf{T} \mathbf{x}(k)$ $\mathbf{x}(k) = \mathbf{T}^{-1} \mathbf{x}_c(k)$

Regulation by State FeedbackFengLi Lian @ 2021
DCS31-SSDesign-17• Then:
$$x_c(k) = T x(k)$$

 $x(k) = T^{-1}x_c(k)$ $x(k+1) = F x(k) + H u(k)$ $T^{-1} x_c(k+1) = F T^{-1} x_c(k) + H u(k)$ $x_c(k+1) = T F T^{-1} x_c(k) + T H u(k)$ $x_c(k+1) = F_c x_c(k) + H_c u(k)$ $F_c = T F T^{-1}$
 $H_c = T H$

Feng-Li Lian © 2021 DCS31-SSDesign-19

The State Feedback Law:

$$u(k) = -\mathbf{K}_c \mathbf{x}_c(k)$$
$$= -\mathbf{K}_c \mathbf{T} \mathbf{x}(k)$$
$$= -\mathbf{K} \mathbf{x}(k)$$

 \Rightarrow K = K_c T

 $\mathbf{F}_c = \mathbf{T}\mathbf{F}\mathbf{T}^{-1}$ $\mathbf{H}_c = \mathbf{T}\mathbf{H}$ $\mathbf{C}_c = \mathbf{C}\mathbf{T}$

Regulation by State Feedback	Feng-Li Lian © 2021 DCS31-SSDesign-20
How to find T:	$\mathbf{x}_c(k) = \mathbf{T} \mathbf{x}(k)$ $\mathbf{x}(k) = \mathbf{T}^{-1} \mathbf{x}_c(k)$
$\mathbf{x}(k+1) = \mathbf{F} \mathbf{x}(k) + \mathbf{H} u(k)$	$\mathbf{F}_c = \mathbf{T}\mathbf{F}\mathbf{T}^{-1}$
$\mathbf{x}_c(k+1) = \mathbf{F}_c \mathbf{x}_c(k) + \mathbf{H}_c u(k)$	$\mathbf{H}_{c} = \mathbf{T}\mathbf{H}$
$\mathbf{W_c} = \begin{bmatrix} \mathbf{H} & \mathbf{F}\mathbf{H} & \cdots & \mathbf{F}^{n-1}\mathbf{H} \end{bmatrix}$	
$\mathbf{W}_{\mathbf{c}c} = \begin{bmatrix} \mathbf{H}_c & \mathbf{F}_c \mathbf{H}_c & \cdots & \mathbf{F}_c^{n-1} \mathbf{H}_c \end{bmatrix}$	
$= \left[(\mathbf{T}\mathbf{H}) \ (\mathbf{T}\mathbf{F}\mathbf{T}^{-1})(\mathbf{T}\mathbf{H}) \ \cdots \ (\mathbf{T}\mathbf{F}\mathbf{T}^{-1})(\mathbf{T}\mathbf{H}) \right]$	$(-1)^{n-1}(TH)$
$= \left[(\mathbf{TH}) (\mathbf{TFH}) \cdots (\mathbf{TF}^{n-1}\mathbf{H}) \right]$	
$= \mathbf{T} \left[(\mathbf{H}) (\mathbf{F}\mathbf{H}) \cdots (\mathbf{F}^{n-1}\mathbf{H}) \right]$	
$= \mathbf{T} \mathbf{W}_{\mathbf{c}}$	

Feng-Li Lian © 2021 DCS31-SSDesign-21

- If the system is "Controllable"
 - $\rightarrow~W_c$ and $W_{c\mathit{c}\mathit{c}}$ are nonsingular
 - \rightarrow T = (W_c) (W_c)⁻¹

In Summary:

$$\mathbf{x}(k+1) = \mathbf{F} \mathbf{x}(k) + \mathbf{H} u(k) \qquad \mathbf{T} = (\mathbf{W}_{cc}) (\mathbf{W}_{c})^{-1}$$
$$\mathbf{x}_{c}(k+1) = \mathbf{F}_{c} \mathbf{x}_{c}(k) + \mathbf{H}_{c} u(k) \qquad \mathbf{F}_{c} = \mathbf{T}\mathbf{F}\mathbf{T}^{-1}$$
$$\mathbf{H}_{c} = \mathbf{T}\mathbf{H}$$
$$\mathbf{x}_{c}(k) = \mathbf{T} \mathbf{x}(k) \qquad \mathbf{C}_{c} = \mathbf{C}\mathbf{T}$$
$$u(k) = -\mathbf{K}_{c} \mathbf{x}_{c}(k) = -\mathbf{K} \mathbf{x}(k) \qquad \mathbf{K} = \mathbf{K}_{c} \mathbf{T}$$
$$\bullet \underline{\mathbf{Ackermann's formula}}$$

Deadbeat Control:

- IF all C.L. poles = 0, i.e., $P(z) = z^n$
- By Cayley-Hamilton Theorem:

$$(\mathbf{F}_{cl})^n = 0, \quad \mathbf{F}_{cl} = \mathbf{F} - \mathbf{H}\mathbf{K}$$

- $\mathbf{x}(k) = 0$ at most *n* steps $b/c : \mathbf{x}(n) = (\mathbf{F}_{cl})^n \mathbf{x}(0)$
- *h* : one design parameter
- x = 0 : at most n steps
- settling time: at most *nh*
- $\bullet \ h \downarrow \ \Rightarrow \ u \uparrow$

Example:

$$\mathbf{x}(k+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} u(k)$$
$$\mathbf{W}_{\mathbf{c}} = \begin{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 1.5 \\ 1 & 1 \end{bmatrix}$$

Characteristic Polynomial:

det(
$$z\mathbf{I} - \mathbf{F}$$
) = det($z\mathbf{I} - \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$)
= det($\begin{bmatrix} z - 1 & -1 \\ 0 & z - 1 \end{bmatrix}$)
= $(z - 1)(z - 1)$ = $z^2 - 2z + 1$

Desired Characteristic Polynomial:

 $P(z) = (z - 0.2)(z - 0.5) = z^2 - 0.7z + 0.1$

Feng-Li Lian © 2021 DCS31-SSDesign-24

Regulation by State Feedback

Example:

Eigenvalue Assignment:

$$\det (z\mathbf{I} - (\mathbf{F} - \mathbf{H}\mathbf{K})) = z^2 - 0.7z + 0.1$$

$$= \det (z\mathbf{I} - \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix})$$

$$= \det (\begin{bmatrix} z - 1 + 0.5k_1 & -1 + 0.5k_2 \\ k_1 & z - 1 + k_2 \end{bmatrix})$$

$$= (z - 1 + 0.5k_1) (z - 1 + k_2) - k_1(-1 + 0.5k_2)$$

$$= z^2 + (-2 + 0.5k_1 + k_2)z + (-1 + 0.5k_1)(-1 + k_2)$$

$$= z^2 - 0.7z + 0.1$$

$$\Rightarrow k_1 = 0.4, k_2 = 1.1$$

- Example:
- Matlab code:
 - F = [1 1; 0 1]
 - ≻ H = [0.5; 1]
 - ➢ Wc = [H F*H]
 - rank(Wc)
 - poly(F)
 - eig(F)
 - P = conv([1 -0.5], [1 -0.2])
 - > roots(P)
 - K = place(F, H, roots(P))

Feng-Li Lian © 2021 DCS31-SSDesign-26

Example:

Matlab code:

- ➢ Fc = [2 −1; 1 0]
- ➤ Hc = [1; 0]
- Wcc = [Hc Fc*Hc]
- rank(Wcc)
- poly(Fc)
- eig(Fc)
- P = conv([1 -0.5], [1 -0.2])

> roots(P)

```
Kc = place( Fc, Hc, roots(P) )
```

- Example:
- Matlab code:
 - Fbf = Fc-Hc*Kc
 - T = Wcc * Wc^(-1)
 - ➤ T*F*T^(-1)
 - ≻ T*H
 - ≻ K*T^(-1)
 - Kc*T

 $T = (W_{cc}) (W_{c})^{-1}$ $F_{c} = TFT^{-1}$ $H_{c} = TH$ $C_{c} = CT$ $K = K_{c} T$

- Example: (Choice of Design Parameters)
- The desired DT system is obtained by sampling:

$$s^2 + 2\zeta w s + w^2$$

$$\rightarrow P(z) = z^{2} + p_{1} z + p_{2}$$

$$\rightarrow p_{1} = -2 e^{-\zeta w h} \cos\left(w h \sqrt{1 - \zeta^{2}}\right)$$

$$\rightarrow p_{2} = e^{-2\zeta w h}$$

$$\Rightarrow k_1 = f_1(p_1, p_2) = f(w, \zeta, h)$$
$$\Rightarrow k_2 = f_2(p_1, p_2) = f(w, \zeta, h)$$

Feng-Li Lian © 2021 DCS31-SSDesign-29

Example: (Choice of Design Parameters)

Feng-Li Lian © 2021 DCS31-SSDesign-30

Observer Design

D.T. Model:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$
$$y(k) = \mathbf{C}\mathbf{x}(k) \qquad u(k) = -\mathbf{K}\mathbf{x}(k)$$

Given:

$$y(k), y(k-1), \cdots$$

 $u(k), u(k-1), \cdots$

To calculate or reconstruct:

 $\mathbf{x}(k) = ?$

- Direct calculation
- Using dynamic model

Observer Design: Direct Calculation

Direct calculation for n samples: k, k-1, ..., k-n+1: $y(k) = \mathbf{C}\mathbf{x}(k)$ y(k-n+1) = Cx(k-n+1) $\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$ y(k-n+2) = Cx(k-n+2)= C [Fx(k-n+1) + Hu(k-n+1)]= CFx(k-n+1) + CHu(k-n+1)y(k-n+3) = Cx(k-n+3) $= C \{ Fx(k-n+2) + Hu(k-n+2) \}$ = C { F [Fx(k-n+1) + Hu(k-n+1)] + Hu(k-n+2) } $= \mathbf{CF}^{2} \mathbf{x}(k-n+1) + \mathbf{CFH}u(k-n+1) + \mathbf{CH}u(k-n+2)$ y(k) $= CF^{n-1}x(k-n+1) + CF^{n-2}Hu(k-n+1)$ $+\cdots + \mathbf{CH}u(k-1)$

Observer Design: Direct Calculation	Feng-Li Lian © 2021 DCS31-SSDesign-32
$y(k-n+1) = \mathbf{Cx}(k-n+1)$ $y(k-n+2) = \mathbf{CFx}(k-n+1) + \mathbf{CH}u(k-n+1)$.)
$y(k) = \mathbf{CF}^{n-1}\mathbf{x}(k-n+1) + \mathbf{CF}^{n-2}\mathbf{H}u(k-n+1) + \mathbf{CF}^{n-2$	(k-n+1) CHu(k-1)
$\begin{bmatrix} y(k-n+1) \\ y(k-n+2) \\ \vdots \\ y(k) \end{bmatrix} = \begin{bmatrix} \mathbf{C} \\ \mathbf{CF} \\ \vdots \\ \mathbf{CF}^{n-1} \end{bmatrix} \mathbf{x}(k-n+1)$	
$+ \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \mathbf{CH} & 0 & \cdots & 0 \\ \mathbf{CFH} & \mathbf{CH} & & 0 \\ \vdots \\ \mathbf{CF}^{n-2}\mathbf{H} & \mathbf{CF}^{n-3}\mathbf{H} & 0 \end{bmatrix} \begin{bmatrix} u(k-1) \\ $	$egin{array}{c} -n+1 \ -n+2 \ dots \ (k{-}1) \end{array} \end{bmatrix}$
$\Rightarrow \mathbf{Y}_k = \mathbf{W}_o \mathbf{x}(k - n + 1) + \mathbf{W}_u \mathbf{U}_{k-1}$	-
$\Rightarrow \mathbf{x}(k-n+1) = \mathbf{W}_o^{-1}\mathbf{Y}_k - \mathbf{W}_o^{-1}\mathbf{W}_u\mathbf{U}_{k-1}$	_

Observer Design: Using Dynamic Model

Feng-Li Lian © 2021 DCS31-SSDesign-34

Estimation using dynamic model:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$
$$\hat{\mathbf{x}}(k+1) = \mathbf{F}\hat{\mathbf{x}}(k) + \mathbf{H}u(k)$$

- If $\hat{\mathbf{x}}(0) = \mathbf{x}(0) \implies \hat{\mathbf{x}}(k) = \mathbf{x}(k)$
- If $\hat{\mathbf{x}}(0) \neq \mathbf{x}(0) \Rightarrow \hat{\mathbf{x}}(k) \rightarrow \mathbf{x}(k)$ only if asymptotically stable

Improvement by using measured outputs:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$

 $\widehat{\mathbf{x}}(k+1|k) = \widehat{\mathbf{F}}\widehat{\mathbf{x}}(k|k-1) + \mathbf{H}u(k)$

+L [$y(k) - C\hat{\mathbf{x}}(k|k-1)$]

Estimation error:

$$\begin{split} \tilde{\mathbf{x}} &= \mathbf{x} - \hat{\mathbf{x}} \\ \tilde{\mathbf{x}}(k+1|k) &= \mathbf{F}\tilde{\mathbf{x}}(k|k-1) \\ &-\mathbf{L}\left[\mathbf{C}\mathbf{x}(k) - \mathbf{C}\hat{\mathbf{x}}(k|k-1)\right] \\ &-\mathbf{L}\mathbf{C}\left[\mathbf{x}(k) - \hat{\mathbf{x}}(k|k-1)\right] \\ &-\mathbf{L}\mathbf{C}\tilde{\mathbf{x}}(k|k-1) \\ &= \left[\mathbf{F} - \mathbf{L}\mathbf{C}\right]\tilde{\mathbf{x}}(k|k-1) \end{split}$$

Hence,

• If L is chosen such that the system is asymptotically stable

 $\tilde{\mathbf{x}}(k+1|k) = [\mathbf{F} - \mathbf{LC}] \tilde{x}(k|k-1)$

- That is,
 - \bullet Given F and C
 - \bullet To find L

 $\Rightarrow \tilde{\mathbf{x}} \rightarrow 0$

 $\Rightarrow \mathbf{x} \rightarrow \hat{\mathbf{x}}$

 \Rightarrow F-LC has prescribed eigenvalues

Observer Design: Using Dynamic Model

Feng-Li Lian © 2021 DCS31-SSDesign-37

In Summary: Observer Dynamics

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$
$$y(k) = \mathbf{C}\mathbf{x}(k)$$

• If the system is completely observable

$$\exists \mathbf{L} \text{ such that } \mathbf{F} - \mathbf{LC} \text{ of}$$

$$\widehat{\mathbf{x}}(k+1|k) = \mathbf{F}\widehat{\mathbf{x}}(k|k-1) + \mathbf{H}u(k)$$

$$+\mathbf{L} \left[y(k) - \mathbf{C}\widehat{\mathbf{x}}(k|k-1) \right]$$

has the following desired char. poly.

$$P(z) = z^n + p_1 z^{n-1} + \dots + p_n$$

Controller and Observer Designs

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$
$$y(k) = \mathbf{C}\mathbf{x}(k)$$

If the system is "Controllable"

$$\mathbf{W_c} = \begin{bmatrix} \mathbf{H} & \mathbf{F}\mathbf{H} & \cdots & \mathbf{F}^{n-1}\mathbf{H} \end{bmatrix} \text{ is nonsingular}$$

$$\rightarrow u(k) = -\mathbf{K} \mathbf{x}(k)$$

 \rightarrow Desired eigenvalues: eig(F – HK)

If the system is "Observable"

 $\mathbf{W_{o}} = \begin{bmatrix} \mathbf{C} \\ \mathbf{CF} \\ \vdots \\ \mathbf{CF^{n-1}} \end{bmatrix}$ is nonsingular $\rightarrow \mathbf{L} \begin{bmatrix} y(k) - \mathbf{C}\hat{\mathbf{x}}(k|k-1) \end{bmatrix}$ $\rightarrow \text{Desired eigenvalues: } \operatorname{eig}(\mathbf{F} - \mathbf{LC})$

Deadbeat Observer:

- Choose L, such that eig($\mathbf{F} \mathbf{LC}$) = 0
- $\tilde{\mathbf{x}}(k) = 0$ at most n steps
- It is equivalent to the direct calculation!

Feng-Li Lian © 2021 DCS31-SSDesign-40

Output Feedback

D.T. Model:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k)$$
$$y(k) = \mathbf{C}\mathbf{x}(k)$$

If all states are measured directly:

 $u(k) = -\mathbf{K} \mathbf{x}(k)$ gives desired C.L. poles

If the states <u>CANNOT</u> measured:

$$\widehat{\mathbf{x}}(k|k-1) = \mathbf{F}\widehat{\mathbf{x}}(k-1|k-2) + \mathbf{H}u(k-1)$$

+ L [$y(k-1) - C\widehat{\mathbf{x}}(k-1|k-2)$]

 $u(k) = -\mathbf{K}\,\widehat{\mathbf{x}}(k|k-1)$

Output Feedback

$$\begin{aligned} \mathbf{x}(k+1) &= \mathbf{F}\mathbf{x}(k) + \mathbf{H}u(k) \\ y(k) &= \mathbf{C}\mathbf{x}(k) \\ \mathbf{\hat{x}}(k|k-1) &= \mathbf{F}\mathbf{\hat{x}}(k-1|k-2) + \mathbf{H}u(k-1) \\ &+ \mathbf{L}\left[y(k-1) - \mathbf{C}\mathbf{\hat{x}}(k-1|k-2)\right] \\ u(k) &= -\mathbf{K}\mathbf{\hat{x}}(k|k-1) \end{aligned}$$

Output Feedback

Output Feedback

$$\begin{aligned} \mathbf{x}(k+1) &= \mathbf{F}\mathbf{x}(k) - \mathbf{H} \mathbf{K} \,\hat{\mathbf{x}}(k|k-1) \\ &\tilde{\mathbf{x}} = \mathbf{x} - \hat{\mathbf{x}} \\ &= \mathbf{F}\mathbf{x}(k) - \mathbf{H} \mathbf{K} \left(\mathbf{x}(k) - \tilde{\mathbf{x}}(k|k-1) \right) \\ &= \left[\mathbf{F} - \mathbf{H} \mathbf{K} \right] \mathbf{x}(k) + \mathbf{H} \mathbf{K} \,\tilde{\mathbf{x}}(k|k-1) \\ &\tilde{\mathbf{x}}(k+1|k) = \left[\mathbf{F} - \mathbf{L} \mathbf{C} \right] \tilde{\mathbf{x}}(k|k-1) \\ &\Rightarrow \text{ system order of } 2n \\ &\Rightarrow \text{ eig}(\mathbf{C}.\mathbf{L}. \text{ system }) = \\ &= \text{eig}(\mathbf{F} - \mathbf{H}\mathbf{K}) \& \text{ eig}(\mathbf{F} - \mathbf{L}\mathbf{C}) \end{aligned}$$

Feng-Li Lian © 2021 **Output Feedback** DCS31-SSDesign-44 Controller Plant G $u(k) = -\mathbf{K}\,\widehat{\mathbf{x}}(k|k-1)$ Observer $\hat{\mathbf{x}}(k+1|k) = \mathbf{F}\hat{\mathbf{x}}(k|k-1) + \mathbf{H}u(k)$ $+L \left[y(k) - C\hat{\mathbf{x}}(k|k-1) \right]$ $= \mathbf{F} \hat{\mathbf{x}}(k|k-1) - \mathbf{H} \mathbf{K} \hat{\mathbf{x}}(k|k-1)$ $+L \left[y(k) - C\hat{\mathbf{x}}(k|k-1) \right]$ $= [\mathbf{F} - \mathbf{H}\mathbf{K} - \mathbf{L}\mathbf{C}] \hat{\mathbf{x}}(k|k-1)$ $+\mathbf{L} y(k)$ \rightarrow eig(**F** – **H K** – **L C**)

Tracking Problem

Objective of Tracking Problem:

 Make the states and the outputs of the system respond to command signals in a specific way

Regulation & Tracking:

- Regulation:
- Tracking:

Tracking Problem

Tracking Problem

Feng-Li Lian © 2021 DCS31-SSDesign-48

A Flexible Robot Arm:

• States:

$$\begin{array}{rcl} x_1 &=& \phi_1 - \phi_2 \\ x_2 &=& w_1/w_0 \\ x_3 &=& w_2/w_0 \end{array}$$

where $w_0 = \sqrt{k(J_1 + J_2)/(J_1J_2)}$

C.T. Model of a Flexible Robot Arm:

$$\frac{dx}{dt} = w_0 \begin{bmatrix} 0 & 1 & -1 \\ \alpha - 1 & -\beta_1 & \beta_1 \\ \alpha & \beta_2 & -\beta_2 \end{bmatrix} x + \begin{bmatrix} 0 \\ \gamma \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ \delta \\ 0 \end{bmatrix} v$$
$$y = \begin{bmatrix} 0 & 0 & w_0 \end{bmatrix} x$$
$$wehre \begin{cases} \alpha = J_1/(J_1 + J_2) \\ \beta_1 = d/J_1 w_0 \\ \beta_2 = d/J_2 w_0 \\ \gamma = k_I/J_1 w_0 \\ \delta = 1/J_1 w_0 \end{cases}$$

Feng-Li Lian © 2021 DCS31-SSDesign-50

Numerical Values used in simulation:

$$\begin{cases} J_1 = 10/9 \\ J_2 = 10 \\ k = 1 \\ d = 0.1 \\ k_I = 1 \\ w_0 = 1 \end{cases}$$

Poles & Zeros:

Zeros:
$$z_1 = -10$$

Poles: $p_1 = 0, p_{23} = -0.05 \pm 0.999i$

 \Rightarrow a pure integrator, $\zeta_p = 0.05$, $w_p = 1$ rad/s

Specifications:

•
$$\zeta_m = 0.7$$
, $w_m = 0.5$ rad/s

Sampling Time:

•
$$wh = 0.1 - 0.6$$

$$\Rightarrow$$
 $h = 0.5 s$

$$\Rightarrow w_N = \pi/h = 6 \text{ rad/s}$$

State Feedback Design:

•
$$u(k) = -\mathbf{K}\mathbf{x}(k) + \mathbf{K}_{c}u_{c}(k)$$

Desired Poles:

•
$$(s^2 + 2\zeta_m w_m s + w_m^2)(s + \alpha_1 w_m) = 0$$

 \Rightarrow Sampled form with h = 0.5 s

$$\Rightarrow \alpha_1 = 2$$

Observer Design:

• eig($\mathbf{F} - \mathbf{L}\mathbf{C}$): similar to C.L. Poles

•
$$(s^2 + 2\zeta_m \alpha_0 w_m s + (\alpha_0 w_m)^2)(s + \alpha_0 \alpha_1 w_m) = 0$$

$\Rightarrow \alpha_0$ farther away from the origin

$$\Rightarrow \alpha_0 = 2, \alpha_1 = 2$$

