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Introduction: The Design Philosophy of Control Science DCS22. Stability-2

= The Research Procedure in Control Science

Physical ‘ Math ‘ System ‘ Control
Process Model Analysis Design

= Estimator

= Plant = Differential egn = Root locus = |dentification
= Sensor = Laplace transform | = Bode diagram " Regulation
= Actuator » Transfer function | = Nyquistplot ~ * Tracking
= Computer = State space form = PID
= Communication l = Stability = Pole placement
= Noise = Robustness = Optimal Control
= Disturbance |* Differenceeqn |« sensitivity LQRILQG

= 7 transform - Controllability = Adaptive control

= Robust control

= Decentralized
(or Multi-person)
Control

= Transfer function |« Observability
= State space form




Introduction: From CT Plant to DT Plant

) e uy
®

= Plant (CT):
* Input-Output Model:
u(t)
y (1)
G(s) = L&)

U(s)

« State-Space Model:

x(t)
y(t)

Ax(t) + Bu(t)
Cx(t) + Du(t)

K] e[k] ufk]

®

= Plant (DT):
* Input-Output Model:
ulk]
ylk]
G(z) — Y (2)

U(z)

» State-Space Model:

x[k 4+ 1]
y[k]
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Fx[k] + Hulk]
Cx|[k] 4+ Dulk]
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e[k] ulk] ylk]

Introduction: Model and Analysis

O, u(t) y(t) r[K]

= Plant (CT): = Plant (DT):
* Input-Output Model:  Input-Output Model:
Ye(s) __ Bc(s) Yo(z) _| Ba(z)
Tet) = Cel8) = 255) T = Ga(2) 1,65
« State-Space Model: « State-Space Model:
x(t) = Ax(t)+ Bu(t) x[k+1] = [Fkr] +[H}x]

y(t) = Ox(t) + Du(t) ylk] = [C[k] +{Dulk]

= System Properties:
» Stability

» Controllability and Reachability
» Observability and Detectability
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= Solution of a System
= Stability and Asymptotic Stability
= |Input-Output Stability
= Stability Tests:
 Jury’s Stability Criterion
* Nyquist and Bode Diagrams
* Nyquist Criterion
* Relative Stabllity

= Lyapunov’'s Second Stability
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Solution of a System DCS22-Stability-6

L=y xR R
e linear or nonlinear
« DT e time-invariant or time-varying
x(k+ 1) = f(x(k), k) x(k) : Z — R"

= [nitial Condition: (for 2nd order system, n=2)

T30 | - x1(ko) |

Xqg = p—

| 220 | - x2(ko)
= Solution: (for 2nd order system , n=2)

- x1(k) | - p1(k, ko, 10) |

x(k) = —
| xo(k) | | po(k, kg, x00)
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= Definition 3.1: Stability

e x1(k) is stable

If for a given ¢ > 0

there exists a d(e, ko) 4

such that
all solutions with ||x>(kg) — x1(ko)l|| < &

= |Ix2(k) —x1(k)|| <€,  Vk 2> kg
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= Definition 3.2: Asymptotic Stability (k)
X1

x2 (k)

e x1(k) is asymptotic stable

If it is stable , and

iIf & can be chosen

such that ||x>(kg) — x1(kg)|| < ¢

= ||x2(k) —x1(k)|| — O, when k — ¢
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= Stability of Linear Discrete-Time Systems

x1(k+1) = Fxi(k), x1(0) =a;
x2(k+1) = Fxp(k), x2(0) =ap
= X =X1 —X2
= x1(k+1) —x2(k+1) = Fxi(k) — Fxo(k)
= %(k+1) =F %2(k). %(0) = a1 — ao
= If xq is stable

= every other solution is also stable

= Hence, for LTI systems,

stability is a property of the system and
not of a special solution
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Stability of Linear DT Systems
= Solution of LTI DT Systems

X(k+1) = Fx(k), x(0) =a; —ap
= x(k) = FFx(0) _
A1 *
F=U U1
0 An
Let A\, = eig( F)
/\lf *
Fk=U U!
0 A
Asymptotic stable = |)\|<1,¢=1,---,n
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Stability of Linear DT Systems

* Theorem 3.1: Asymptotic Stability of Linear Systems

e A DT LTI system iIs asymptotic stable

< all eig(F) are strictly inside the unit disc



Stability of Linear DT Systems
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= Stability of Linear Continuous-Time Systems

x(t) = Ax(t), x(to) =xo0
= x(t) = e(Alt—to)) x(tgp)
A *
Let \;, = eig( A) = A=U U1
O An
i eAl(t_tO) * |
=x(t) = U U1 x(tp)
Asymptotic stable = Real()\;) <0,:=1,---,n

|2
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Input-Output Stability
= Definition 3.3: Bounded-Input-Bounded-Output Stability

e A LTI system is defined as BIBO stable

If @ bounded input gives a bounded output
for every initial value

* Theorem 3.2: Relation between Stability Concept

Asymptotic stable = stable and BIBO stable
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= Example 3.1: Harmonic Oscillator

X(k 4 1) i coswh sinwh ] X(k) 4 [ 1—coswh ] u(k:)

—sinwh Ccoswh sinwh

y(k) = :1 o]x(k)

e mag( eig(F) ) =1

o ifu(k) =0 = [x(k+ 1| =I[x(0)]
= the system is stable

e But, if input is a cos or sin signal with w rad/s

= the output contains a sinusoidal function
with growing amplitude

= the system is not BIBO stable



Stability Test

e Eigenvalues of F

e Characteristic Polynomials

e RoOt locus method

e Nyquist criterion

e Lyapunov’'s method

)\iz
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eig(F)

A(2) = agz" +a12" L+ Fan

a; < N\

.

s

(1,

AW
>



| Stability Test: Routh’s Stability Criterion (for CT) o a2 202
a Ilw

3.6.2 Routh’s Stability Criterion = Routh in 1874
= Hurwitz in 1895

I S
|

_ )
a(s) = s" + as” I +ars" -+ a, 15+ ay. (365)

A necessary (but not sufficient) condition for stability is that all the coefficients
of the characteristic polynomial b

v

A system s stable if and only if all the elements in the first column of the Routh

array arp positive [ 1 ag]
ajaz — as

— (ct

o= L LUI as -
o= aq N aj
(1 a4 ]
We then add subsequent rows to complete the Routh array: / det o as| aa—as
) = = ’
—— - ay ay
‘Row n 5 1 dy Gy wer det[ 1 a]
ROW 7 — 1 Sn_] s a a a o m—LL ap ag | o Cl]llﬁ—(l7.
l 2 : ] 3 5‘ ? aj ay
ROW = 2 Sn— . b] bz b3 e _u| a31
ROW n — 3 S”_3: Cl C2 i) ot » o _det Lbl bz_ _ biaz — a1b>
L /71 171 '
. . . . . det _(ll (15]
s % P o Lb‘ b3 B bias — aibsz
Row 2 §ee o =-— = ==
Row 1 5 % )
S det ay az
Row 0 SO: L | b1 b4 bya7 — a1bs
(.,‘ —Bi— — .
- by by

Franklin, Powell, Emami-Naeini 2002




Feng-Li Lian © 2021

Stability Test: Routh’s Stability Criterion (for CT) DCS22-Stability-17

= Example 3.33: Stability versus Parameter Range
® A feedback system for testing stability

+ s+ 1

d K — s(s—1)s+6) | >y

= The characteristic equation for the system:
s+ 1 . 3 5
1 + Ks(s—l)(s—|—6) = 0 + 5 s —|—‘(K—6)3

s3 1 K —6

+ K =0

s2 |5 K
s 1 |(axk—=30)5| = E=30) 4 L ks 75
O K 5

= K > 0

Franklin, Powell, Emami-Naeini 2002
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(1918) (1922) (1961)
Schur-Cohn-Jury

AA(E):1aoz”%—a12”_1+—**~+—anlz()

(Row 3) = (Row 1) — (Row 2) (o)

aq Un—1 dp I
an
Ap—1 -+ a1 ap || on=—
ag
n—1 n—1
ay a,_1
n—1
a
n—1 n—1 n—1
a2 @y | Un—1= qn—1
0




Stability Test: Jury’s Stability Criterion (for DT) Feng-Li Lian © 2021

DCS22-Stability-19

= Theorem 3.3: Jury's Stability Test

o If ag > O, ! Z
then, A(z) = 0 has all roots inside unit disc _6}

> allaf>0,k=0,1,---,n—1

e If NO ag is zero,
then, the number of negative af
— the number of roots outside the unit disc

e Remark:

o If all af > 0,
then,

A(l) > O

ag >0 — { (—1)" A(~1) > 0
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= Example: Jury's Stability Test g _ W @Ti=ai—oga

“ oy =af/d}

A(2) = 2° + a1z + as

al an

an aq 1 an = ao
| 1-a3 ]al(l—g@) o =Y
ai(l—ap) 1-—a5 1+ as
2
2 al(l_GQ)]
[1 a5 1+a; |
2
All the roots are inside the unit circle if 2%1_ a§ > 0
_ a2 @\t 7ao
1—a5 1Fa, > 0
ar» < 1

= ap > —1-+4aq
a> > —1—aq




Stability Test: Nyquist and Bode Diagrams foiebvaidin

e DT pulse-transfer function: G(z)

e Nyquist or Frequency curve

G(eI*MY. for wh € [0, ]
upto to the Nyquist frequency, wy = 7/h

e Note that it is sufficient
to consider the map in wh € [—m, 7]

e Because G(e/vh) is periodic
with period 27 /h



Stability Test: Nyquist and Bode Diagrams

= Example 3.3: Frequency Responses

1

G(s) = —
)= S Tas 11

Zero-order hold sampling 4 = 0.4

G2 — 0.0662 + 0.055
)T 2 14502 + 0.571

Feng-Li Lian © 2021
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Stability Test: Nyquist and Bode Diagrams foiebvpidishs

= Example 3.3: Freguency Responses
Bode Diagram

«CT: ---
I — e = DT L
0.01} e
0?1 I1 10
0
. Imaginary axis

1 1
0.1 1 10
Frequency, rad/s

Nyquist Diagram
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Stability Test: Nyquist Criterion

= Nyquist Criterion

H(z)
1+ H(z)

U, (2)

Closed-loop system characteristic equation
1+H(z)=0



Stability Test: Nyquist Criterion fiobvaidishyn

Franklin, Powell, Emami-Naeini 2002

i Im
Figure 6.17 w Im(s)
An s-plane plot of a [ _ Contour at
contour C; that encircles ‘ \\g infinity
the entire RHP \\
\
C \
: \
| .
| pare
| Re (s)
¢
G /
/
7
/
Ve
///

Principle of arguments states
N=7Z-P

Z and P are the number of zeros and poles
of 1 + H(z) outside the unit disc.
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Stability Test: Nyquist Criterion

= Example 3.4: A Second-order system

h=1
025K
H —
B = Gone_0s)
then
H(em) 025K (1.5(1 —cos w) —2sin*w — isin®(2cos @ — 1.5))

(2 —2cosw)(1.25 + cos w)
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Stability Test: Nyquist Criterion

= Example 3.4: A Second-order system

‘Im

Re

H(e7™), for w € [0, 7]

e At some w, phase shift > 1809
e Stable if K < 2
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= Definitions 3.4 & 3.5: Gain & Phase Margins

e [ he amplitude or gain margin:

1
|G (etwoh)]

darg G(eszh) — — T Amarg —

e [ he phase margin:

‘G(eiwchﬂ =1 $marg = ™+ arg G(eiwch)



Feng-Li Lian © 2021
DCS22-Stability-29

Lyapunov’s Second Stability

= Definition 3.6: Lyapunov Function

e V(x) is a Lyapunov function for

x(k+1) = f(x(k)) f(0)=0
o If:
1. V(x) is continuous in z and V(0) =0
. V(x) is positive definite
3. AV(x)=V(f(x)) — V(x)
IS negative definite
4. V(x) = o0 as |x| = oo

N

e EXistence of Lyapunov function implies
asymptotic stability for the solution £ = 0O



Lyapunov’s Second Stability

= Geometric lllustration
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1. V(x) is continuous in x and V(0) =0
2. V(x) is positive definite
3. AV(x) =V(f(x)) = V(x)
is negative definite
4. V(x) — o0 as |x| — oo

x(k+1) = f(x(k).  f(0)=0

Vix(k+1))

b xo

Vix(k))
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Lyapunov’s Second Stability

1. V(x) is continuous in x and V(0) =0

Example 3.6: Lyapunov function 2. V(x) is positive definite
3. AV(X) = V(f(x) = V(x)
X(k -I— 1) = FX(]{) is negative definite

4. V(x) — o0 as |x| — oo

Vx)=x'Px P >0
AV (x) =V (x(k+1)) - V(x(k))
= V(Fx(k)) — V(x(k))
= (Fx(k))"P(Fx(k)) —x"Px
= xTFTPFx —x' Px
=x(FIPF-P)x =x(-Q)x =-x'(Q)x
V is a Lyapunov function

iff there existsa P >0 FI'PF-P= —Q Q>0

that satisfies the Lyapunov equation



Lyapunov’s Second Stability foiobvaidishyn
= Example 3.6: Lyapunov function for CT case
x(t) = Ax(t)
Vx)=xIPx P >0
V(x) =xIPx+x'Px
= xPAx 4+ (Ax)Px
= xIPAx + xT AT Px

= x(PA + ATP)x
PA+ AP =-Q
=x"(-Q)x

= x'(Q)x

Khalil 2002
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Lyapunov’s Second Stability
OTPO-—P=-Q Q>0

= Example 3.6: Lyapunov function

1.19 —-0.25

10
Q:[ ] :>P=[—o.25 2.05]

04 O
O 1

P = [ 0.4 0.6

State x,

State x,



