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= Digitalization
= Timing Analysis in a Control System
= Some Related Issues:
* Multiple or Random Time-Delay Systems
» Types of Jitters
« Timing Requirements & Control Attributes
* Multiprocessor Implementation of Digital Engine Control
* End-to-End Delay of Videoconferencing
 Timing Analysis for Programs

« Temporal Characteristics of Task Transmission
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= Control System Block Diagram
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= Digitalization
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= Single-Input-Single-Output and Multiple-Input-Multiple-Output
= Single Delay and Multiple Delays
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Timing Analysis: Single-Input-Single-Output with Single Dela
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Timing Analysis: Multiple-Input-Multiple-Output
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= Paper:
« B. Wittenmark, J. Nilsson, and M. Torngren,
* "Timing problems in real-time control systems,"

* In Proceedings of American Control Conference, Seattle, Washington, pp. 2000-2004,
June 1995.

= Abstract:

* In this paper we have discussed some of the timing problems in real-time control systems.
The influence of the scheduling on the models is discussed together with different
interesting problem formulations. The effect of the timing problems are exemplified through
some simulated examples. The future research will concentrate on analysis of the
robustness properties with respect to time-delay variations and jitter in sampled-data
systems. The following items will be of great interest: 1) Studying ways of analyzing time-
varying systems, in particular influences of jitter and time-varying delays. 2) Applicability of
robustness theory to derive jitter specifications. 3) Ways of detecting and compensating for

transient errors.
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= Paper:
« J. Nilsson, B. Bernhardsson, B. Wittenmark,

» "Stochastic analysis and control of real-time systems with random time delays,”
« Automatica, 34(1):57-64, Jan. 1998.

= Abstract:

* The paper discusses modeling and analysis of real-time systems subject to random time
delays in the communication network. A new method for analysis of different control
schemes is presented. The method is used to evaluate different suggested schemes from
the literature. A new scheme, using so called timestamps, for handling the random time
delays is then developed and successfully compared with previous schemes. The new
scheme is based on stochastic control theory and a separation property is shown to hold

for the optimal controller.
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Types of Jitters

= Paper:
* P. Marti, J.M. Fuertes, G. Fohler, and K. Ramamritham,
» "Jitter compensation for real-time control systems,"
* In Proc. 22nd IEEE Real-Time Systems Symposium, pp. 39-48, Dec. 2001.

= Abstract:

 In this paper, we first identify the potential violations of control assumptions inherent in
standard real-time scheduling approaches (because of the presence of jitters) that causes,
degradation in control performance and may even lead to instability. We then develop
practical approaches founded on control theory to deal with these violations. Our approach
is based on the notion of compensations wherein controller parameters are adjusted at
runtime for the presence of jitters. Through time and memory overhead analysis, and by
elaborating on the implementation details, we characterize when offline and on-line
compensations are feasible. Our experimental results confirm that our approach does
compensate for the degraded control performance when EDF and FPS algorithms are
used for scheduling the control tasks. Our compensation approach provides us another
advantage that leads to better schedulability of control tasks. This derives from the
potential to derive more flexible timing constraints, beyond periods and deadlines
necessary to apply EDF and FPS. Overall, our approach provides guarantees offline that
the control system will be stable at runtime-if temporal requirements are met at runtime-
even when actual execution patterns are not known beforehand. With our approach, we
can address the problems due to (a) sampling jitters, (b) varying delays between sampling
and actuation, or (c) both-not addressable using traditional EDF and FPS based

scheduling, or by previous real-time and control integration approaches.
05/03/09
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Types of Jitters: Fixed Timing Constraints

Sysiam razponsa

.03
— Ideal
---- Zamplng jiter+sampling-actuation delays R (no compensation)
ooz L Sampling jilter+sampling-actiration delays EDF(no compensation)
n, £ [
) P
’ y :." .‘l .I ¢
ool S o ST N
¥ H " H Lo f Ty g
!’; T fiy o
L ' e ; ; Y 1 .I
& gl ;! il 1 A
E i | ! N '! i - A
AT I O
el W “ AU RN R
1 A TR
bg by ;
002 - i . .; Pl
Q.03 : = :
5 E 7 3| 5 10
Time

Marti et al. 2001

Feng-Li Lian © 2021
DCS15-Timing-16

Taskl

Task2

Control task

60ms

70ms

80ms

10ms

10ms

Ims

Angre

nao3

002}

0.0

£.01
-0.02

-1.03
5

Eystorn response

— Ideal
- -- Barmpling jittartzamgling-actuation delays AM (compensation}
- - Samphng i er+sampling-actuation delays EDF (¢armpensation) | |

Time

03/21/05



Feng-Li Lian © 2021
DCS15-Timing-17

Types of Jitters: Flexible Timing Constraints
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Timing Requirements & Control Attributes

= Paper:
- |. Bate, P. Nightingale, and A. Cervin,

« "Establishing timing requirements and control attributes for control loops in real-time
systems,”

* Proc. 15th Euromicro Conf. on Real-Time Systems, pp. 121-128, July 2003.

= Abstract:

« Advances in scheduling theory have given designers of control systems greater flexibility
over their choice of timing requirements. This could lead to systems becoming more
responsive, more flexible and more maintainable. However, experience has shown that
engineers find it difficult to exploit these advantages due to the difficulty in determining the
"real" timing requirements of systems and therefore the techniques have delivered less
benefit than expected. Part of the reason for this is that the models used by engineers when
developing systems do not allow for emergent properties such as timing. This paper
presents an approach and framework for addressing the problem of identifying an
appropriate and valid set of timing requirements and their corresponding control parameters

based on a combination of static analysis and simulation.
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End-to-End Delay of Videoconferencing

= Paper:
« M. Baldi and Y. Ofek,
« "End-to-end delay analysis of videoconferencing over packet-switched networks,”
« |[EEE/ACM Transactions on Networking, 8(4): 479-492, Aug. 2000.

= Abstract (short):

* In order for the participants in a videoconference call to interact naturally, the end-to-end
delay should be below human perception; even though an objective and unique figure
cannot be set, 100 ms is widely recognized as the desired one-way delay requirement for
interaction. Since the global propagation delay can be about 100 ms, the actual end-to-end
delay budget available to the system designer (excluding propagation delay) can be no
more than 10 ms. We identify the components of the end-to-end delay in various
configurations with the objective of understanding how it can be kept below the desired 10-
ms bound. We analyze these components step-by-step through six system configurations
obtained by combining three generic network architectures with two video encoding
schemes. We study the transmission of raw video and variable bit rate (VBR) MPEG video
encoding over 1) circuit switching; 2) synchronous packet switching; and 3) asynchronous
packet switching. In addition, we show that constant bit rate (CBR) MPEG encoding
delivers unacceptable delay—on the order of the group of pictures (GOP) time interval—
when maximizing quality for static scenes.

05/03/09
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Timing Analysis for Programs

= Paper:
« S.-S. Lim, J. Kim, and S.L. Min,
« "Aworst case timing analysis technique for optimized programs,”

* In Proc. Fifth Int'l Conf. Real-Time Computing Systems and Applications, pp. 151-157, Oct.
1998.

= Abstract:

* We propose a technique to analyze the worst case execution times (WCETSs) of optimized
programs. Our work is based on a hierarchical timing analysis technique called the
extended timing schema (ETS). A major hurdle in applying the ETS to optimized programs
is the lack of correspondences in the control structure between the optimized machine
code to be analyzed and the original source program written in a high-level programming
language. We suggest a compiler-assisted approach where a timing analyzer relies on an
optimizing compiler for a consistent hierarchical representation and an accurate source-
level correspondence that are essential for accurate WCET analysis for optimized
programs. In order to validate the proposed approach, we implemented a proof-of-concept
version of a timing analyzer for a 256-bit VLIW processor and compared the analysis
results with the simulation results. The experimental results show that the proposed

solution can accurately predict the WCETs of highly-optimized VLIW programs.
05/03/09
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while (low == up) {
mid = (low + up) == 1; bl
if {datalmid] .key == x) { 1l
up = low - 1; addu 525,815,514
= ! ara $13,525,0x1
fwalue = datalmid] .value; 211 525,813, 0X3
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if (data[midl .key = x} 1w $25,0(81)
up = mid - 1; nop
elstil_lw - mid s 1 bne 525, 54, 0x40010C
} ) bblk13:
211 $25,513, 0X3
lui 424, 0x1000
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1w 524, 4(3524)
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addiu 514, %15, oxffff
bBblkls:
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1ui 51, 01000
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nop
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nop
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bblkao:
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Figure 1. Overall processing steps in the ETS: (a) a sample high-level program, (b) the syntax tree,
(c) the assembly code, and (d) the steps for applying the ETS to the sample program.

Lim, Kim & Min 1998
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Timing Analysis for Programs

Lim, Kim & Min 1998

Benchmark
Procrams

Description

MatMul multiplies two 5 > 5 inleger matrices
JEDCTINT | performs the forward Discrete Cosine Transform
used in JPEG
FIR performs a 32-taps Finite Impulse Response (FIR )
lillering operation
FFT performs the Fast Fourier Transtorm (FFT) on

256 floating point numbers

Table 1. The benchmarks used for the experi-

ments.

Benchmark | Simulation Analysis

Programs Results Results
MatMul 1673 | 739
JFDCTINT 4456 4750
FIR 30940 32218

FFT 2879360 4567T8T2

Table 2. Predicted and measured execution

cycles of the benchmark programs.
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Multiprocessor Implementation of Digital Engine Control

= Paper:
« P.L. Shaffer,
« "A multiprocessor implementation of real-time control for a turbojet engine,"
* |[EEE Control Systems Magazine, 10(4): 38-42, June 1990.

= Abstract:
* Areal-time control program for a turbojet engine has been implemented on a four-

processor computer, achieving a speedup of 3.38 times the speed of a sequential version
of the same program on a single processor. The concurrent program was produced from a
sequential program by subjecting the sequential program to global, hierarchical
interprocedural data-flow analysis and timing measurements. A static schedule for the
constituent tasks of the control program on the four processors was determined using a
heuristic algorithm based on the critical-path method. The approach should be applicable
to a variety of control and related programs where iterative tasks with well-bounded

execution times are computed in systems with hard real-time requirements.

05/03/09
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Fig. 1. Digital engine control for a rurbojet engine, showing inpuls from aircraft, sensor
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Temporal Characteristics of Task Transmission

= Paper:
* P. Pedro and A. Burns,
» "Worst case response time analysis of hard real-time sporadic traffic in FIP networks,*”
* Proc. Ninth Euromicro Workshop on Real-Time Systems, pp. 3-10, June 1997

= Abstract:

» Real-time fieldbuses are currently a significant issue in both process control and
manufacturing areas. They constitute the base upon which real-time fault-tolerant
distributed systems can be designed for these application areas. A potential large leap
towards the use of Fieldbus in such time-critical applications lies in the evaluation of its
temporal behaviour. In particular an important problem associated with the Fieldbus FIP is
its inability to guarantee the timing performance of sporadic traffic. In this paper we
develop the pre-run-time schedulability analysis of FIP bounding the worst case response

time of the sporadic traffic

05/03/09



Temporal Characteristics of Task Transmission

Fl1..P3

5

| |

P4/F5

|

S2/53

Feng-Li Lian © 2021
DCS15-Timing-31

BODE | NODE 2
CYCLE TIME
EUS ~¢ >
- CYCLIC PHASE ’_' - ACYCLIC PHASE -
NODE K jooo NODE N " / //
T T T T — I Lb- SPORADIC TRAFFIC
SLOT
\ : LIST OF IDENTIFIERS
Pm Xn ' 3K TIME FRAME (REPLY)
- BA'S REQUEST OF
IDENTIFIERS FRAME

Pedro & Burns 1997

o PERIODIC VARIABLE

(NOTIFIES THE BA OF
PENDING SPORADIC
REQUESTS)

Figure 3. Slot time in a micro-cycle

03/16/04



Feng-Li Lian © 2021

Temporal Characteristics of Task Transmission D015 Timing-32

= Paper:
« S. Saad-Bouzefrane, and F. Cottet,
« "A performance analysis of distributed hard-real time applications,"
* Proc. IEEE Int'l| Workshop on Factory Communication Systems, pp. 167-176, Oct. 1997

= Abstract:
 In distributed hard real-time applications there is a need for temporal analysis to evaluate

and optimise a design with respect to the deadlines. The key method is the scheduling
analysis of such applications, which means the schedulability not only of its tasks but of its
messages too. The authors present a schedulability analysis which allows one to
determine the timing parameters of messages and to update those of tasks. Given an
initial task set characterised by temporal attributes and network interactions, this
methodology permits one to produce valid execution sequences and to evaluate the

relevant timing factors. Simulation results done with CAN and FDDI protocols are deduced.

05/03/09
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Temporal Characteristics of Task Transmission

Tablel: Timing charactenistics of the application tasks

Feng-Li Lian © 2021
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Task mnode C P=D Py
Aj Nj 200 10000 3
A2 N 300 10000 2
Az N 100 20000 1
Ay Njp 200 5000 4
By Nz 300 10000 2
By  Np 400 10000 1
B3 N> 200 5000 3
B4 N2 100 15000 1
Cy N3 300 20000 2
C2 N3 150 15000 3
C3 N3 200 10000 4
Table2: The timing attributes of messages
CAN FDDI
message |C D P C D P
mj 26 260 10000 | 726 3726 10000
0
m2 13 650 20000 f1363 6726 20000
message mj m32 m3 my 0
m 900 1900 200 2100 m3 39 780 5000 1089 3726 5000
0
m4 39 1820 15000 | 1089 12726 15000
0
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Temporal Characteristics of Task Transmission DCS15Timirg.35
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