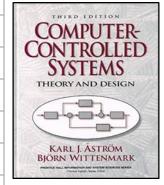
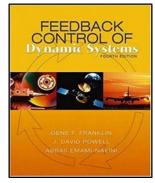
Spring 2021

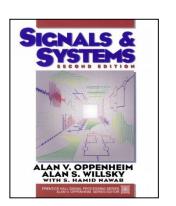
數位控制系統 Digital Control Systems

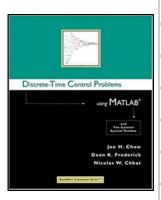
DCS-14 Sampling



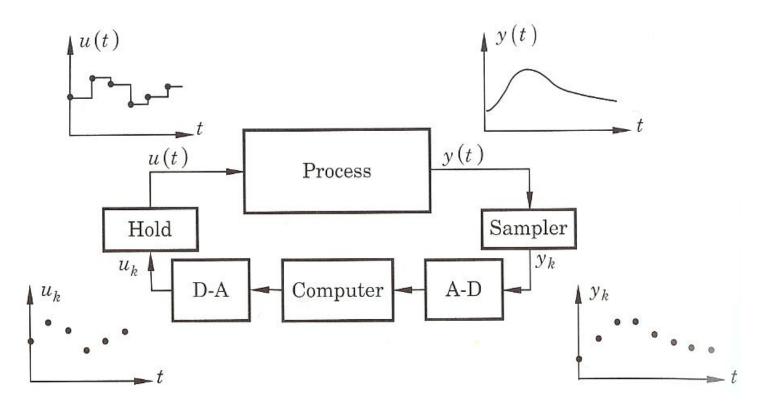


Feng-Li Lian NTU-EE Feb – Jun, 2021



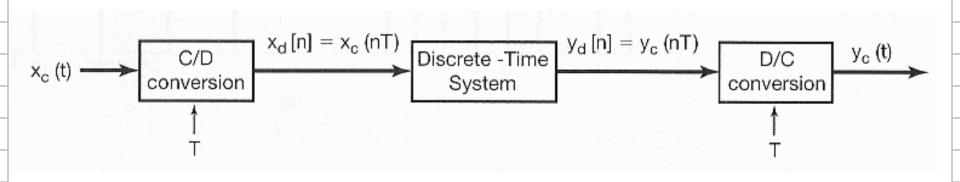


- Representation of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals



- 1. Wait for a clock pulse
- 2. Perform A/D conversion
- 3. Compute control variable
- 4. Perform D/A conversion
- 5. Update regulator state
- 6. Go to step 1

C/D or A-to-D (ADC) and D/C or D-to-A (DAC):



C/D: continous-to-discrete-time conversion

A-to-D: analog-to-digital converter

D/C: discrete-to-continous-time conversion

D-to-A: digital-to-analog converter

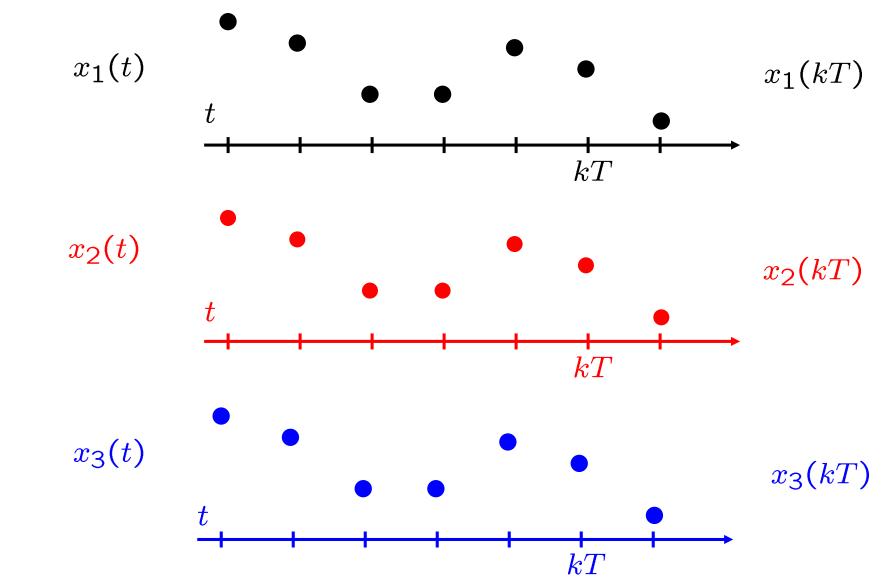
Representation of CT Signals by its Samples

$$x_1(t)$$

$$x_2(t)$$

$$x_3(t)$$

Representation of CT Signals by its Samples



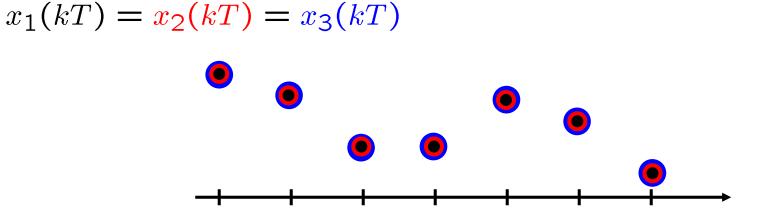
kT

Representation

Representation of CT Signals by its Samples

$$x_1(t) \neq x_2(t) \neq x_3(t)$$

$$t \longrightarrow$$



The Sampling Theorem

• for $t \geq 0$

 $u(t) = e^{-3t}$

 $U(s) = \frac{1}{s+3}$

Magnitude (dB)

Phase (deg)

10⁻¹

U(s)

Frequency (rad/s)

Magnitude (dB)

Phase (deg)

10⁻²

LTI System

 $\longrightarrow y(t) = \left[e^{-t} - e^{-2t} \right]$

G(s)

Frequency (rad/s)

10⁰

 $G(s) = \frac{(s+3)}{(s+1)(s+2)}$

 $Y(s) = G(s)U(s) = \frac{1}{(s+1)(s+2)}$

Magnitude (dB)

Phase (deg) -135 -180

10¹

-60

10⁻¹

Feng-Li Lian © 2021

DCS14-Sampling-8

Y(s)

10⁰

Frequency (rad/s)

10¹

Feng-Li Lian © 2021 DCS14-Sampling-9

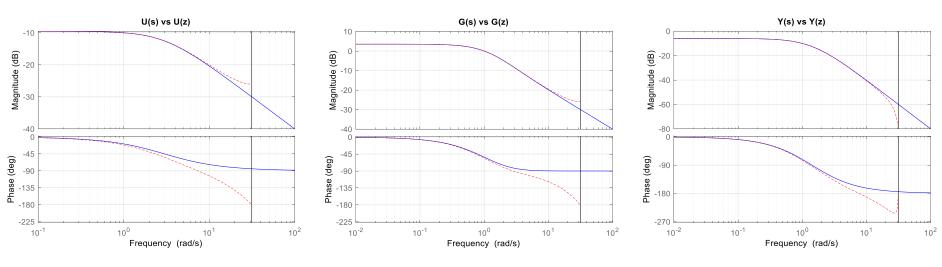
0.1(s) •
$$w_s = 2\pi/0.1 = 62.8 \text{(rad/s)}$$

• sample at
$$h=0.1(s)$$
 • $w_s=2\pi/0.1=62.8 (rad/s)$
$$u[k] = e^{-3kh} \longrightarrow LTI \, \text{System} \longrightarrow y[k] = \left[e^{-kh} - e^{-2kh}\right]$$

$$G(z) = \frac{0.09969z - 0.07382}{z^2 - 1.724z + 0.7408}$$

$$U(z) = \frac{0.08639}{z - 0.7408}$$

$$Y(z) = \frac{0.004528z + 0.004097}{z^2 - 1.724z + 0.7408}$$



The Sampling Theorem

Some Interesting Videos of Sampling Effect

- Aliasing x1
 - https://www.youtube.com/watch?v=15DC3e4kt-0
- Aliasing x4
 - https://www.youtube.com/watch?v=z3_TUQp8TaQ
- > 55 Minute Alias
 - http://www.youtube.com/watch?v=xTo3gxsZOWo
- Airlines Propeller Effect
 - http://www.youtube.com/watch?v=ttvSzoqGQIY
- Wagon-wheel effect
 - http://www.youtube.com/watch?v=jHS9JGkEOmA&noredirect=1

 ω_{M}

(b)

 $-\omega_{\mathsf{M}}$

The Sampling Theorem:

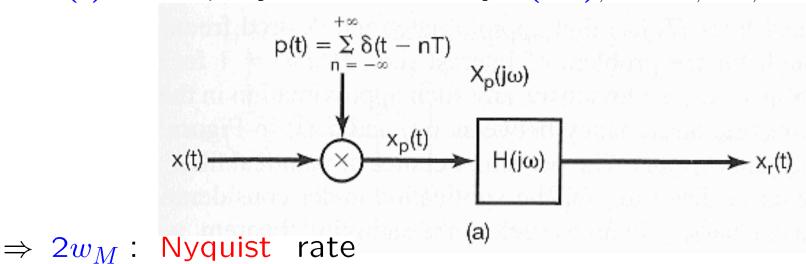
$$x(t)$$
: a band-limited signal

 $> 2m\pi$ where $m = 2\pi$

with X(jw) = 0 for $|w| > w_M$

if
$$w_s > 2w_M$$
 where $w_s = \frac{2\pi}{T}$

$$\Rightarrow x(t)$$
 is uniquely determined by $x(nT), n = 0, \pm 1, \pm 2, ...,$



 w_M : Nyquist frequency

Impulse-Train Sampling:

$$p(t)$$
: sampling function

$$T$$
: sampling period

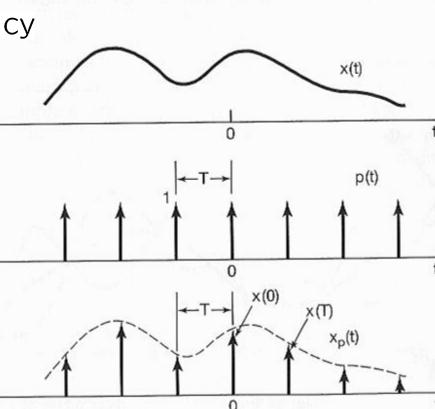
$$w_s = \frac{2\pi}{T}$$
 : sampling frequency

$$\Rightarrow x_p(t) = x(t) p(t)$$

$$+\infty$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

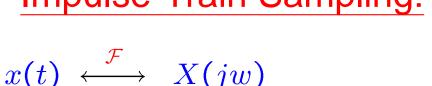
$$x_p(t) = \sum_{n=0}^{+\infty} x(nT)\delta(t-nT)$$

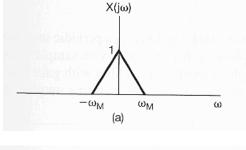


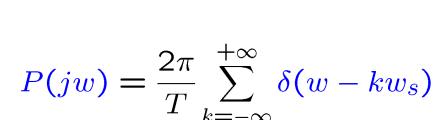
The Sampling Theorem

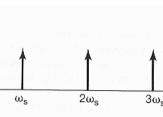
Feng-Li Lian © 2021 DCS14-Sampling-13

Impulse-Train Sampling:

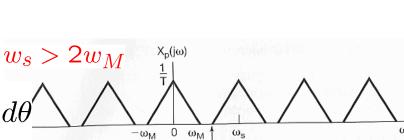


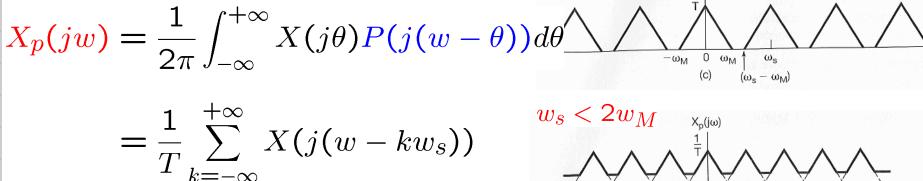


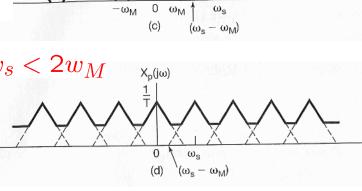




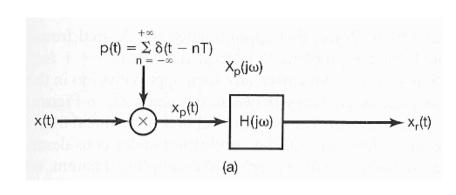
From multiplication property,

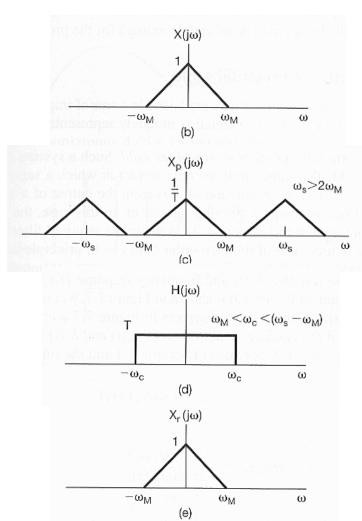




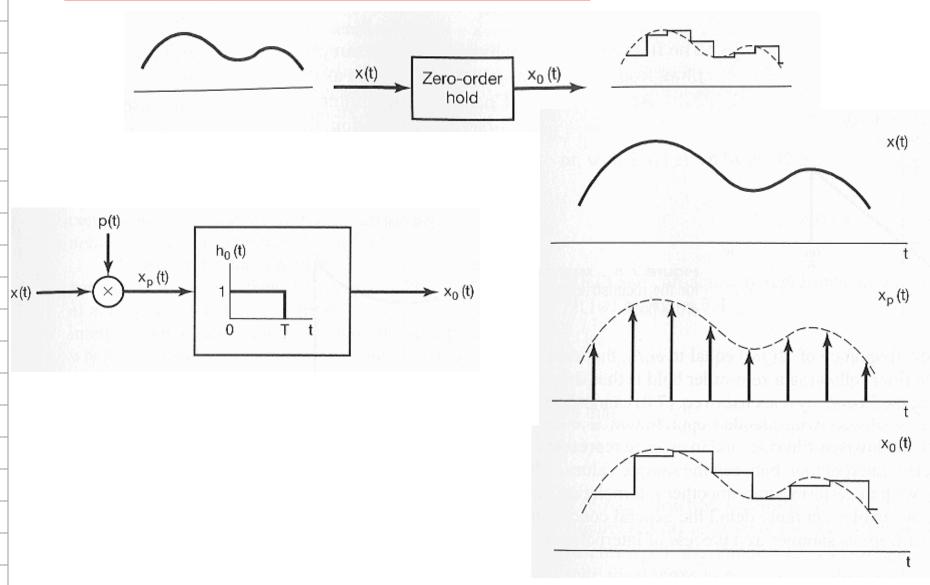


Exact Recovery by an Ideal Lowpass Filter:





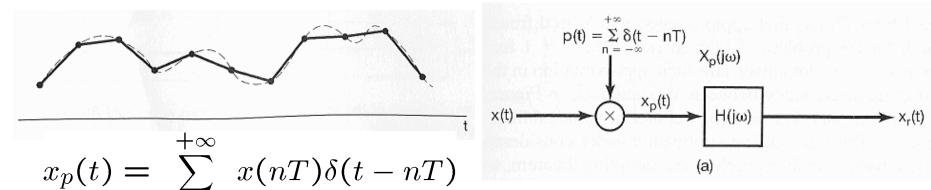
Sampling with Zero-Order Hold:



- Representation of of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

Reconstruction of a Signal from its Samples Using Interpolation of a Signal from its Samples Using Interpolation of the Sampling of the Sampling of the Sample of the Samp

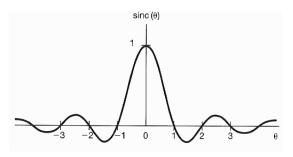
Exact Interpolation:



 $x_r(t) = x_p(t) * h(t)$

ideal lowpass filter
$$h(t) = \frac{w_c T \sin(w_c t)}{\pi w_c t}$$

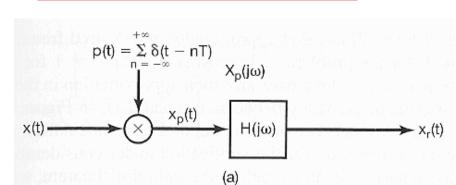
$$\frac{x_r(t)}{x_r(t)} = \sum_{n=0}^{+\infty} x(nT)h(t - nT)$$

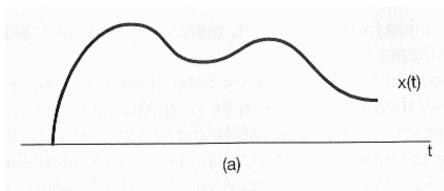


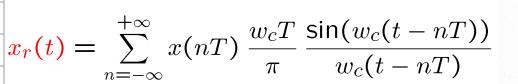
$$\frac{x_r(t)}{x_r(t)} = \sum_{n=-\infty}^{+\infty} x(nT) \frac{w_c T}{\pi} \frac{\sin(w_c(t-nT))}{w_c(t-nT)}$$

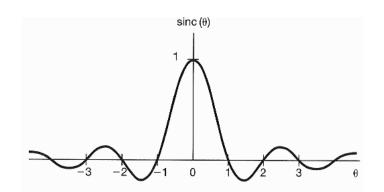
Reconstruction of a Signal from its Samples Using Interpolation 14-Sampling-18

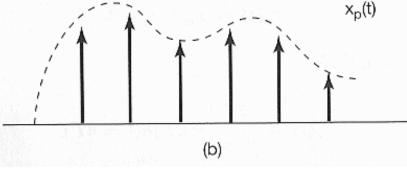
Exact Interpolation:

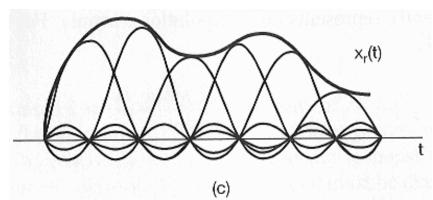






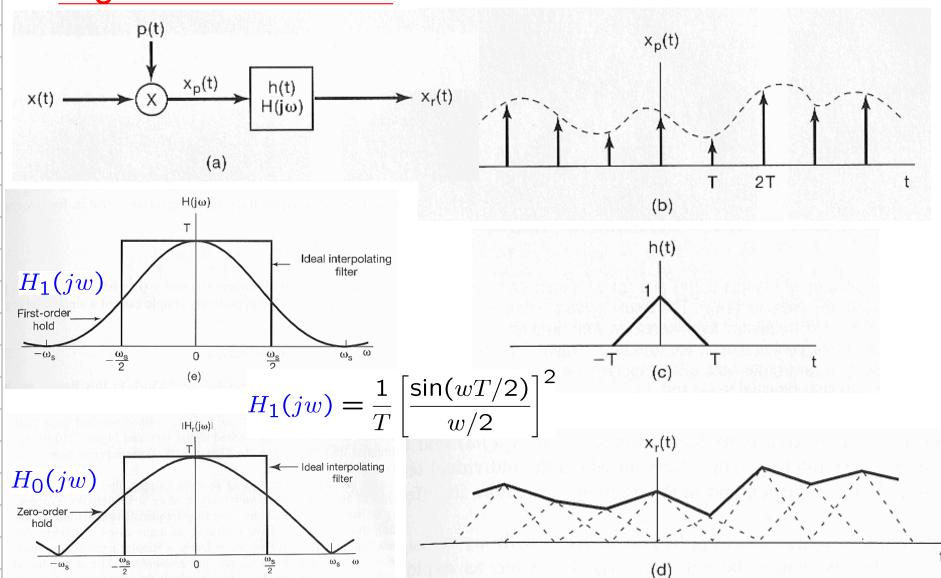






Reconstruction of a Signal from its Samples Using Interpolation 14-Sampling-19

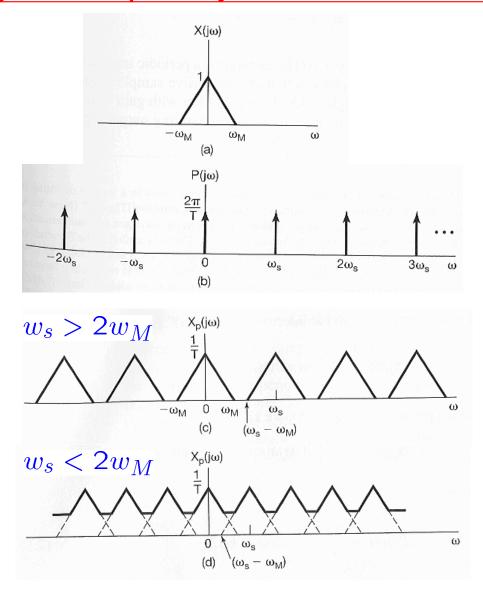
Higher-Order Holds:

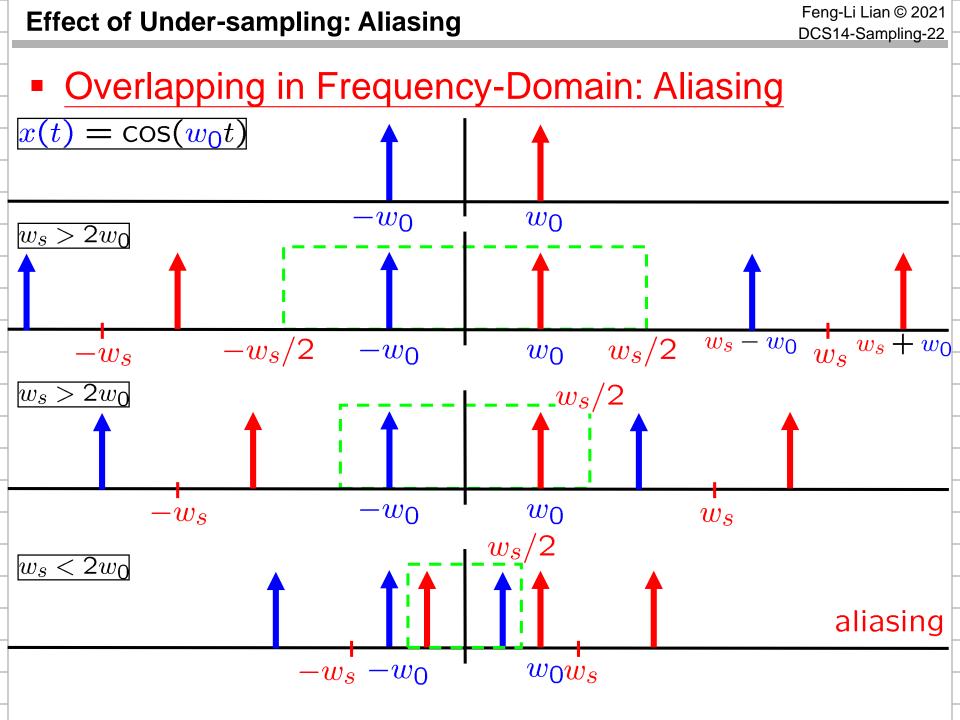


- Representation of of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

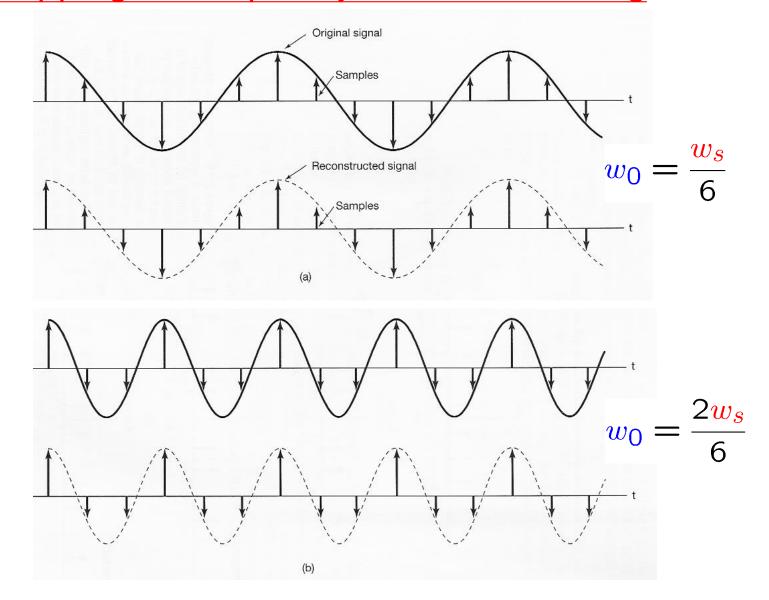
Effect of Under-sampling: Aliasing

Overlapping in Frequency-Domain: Aliasing

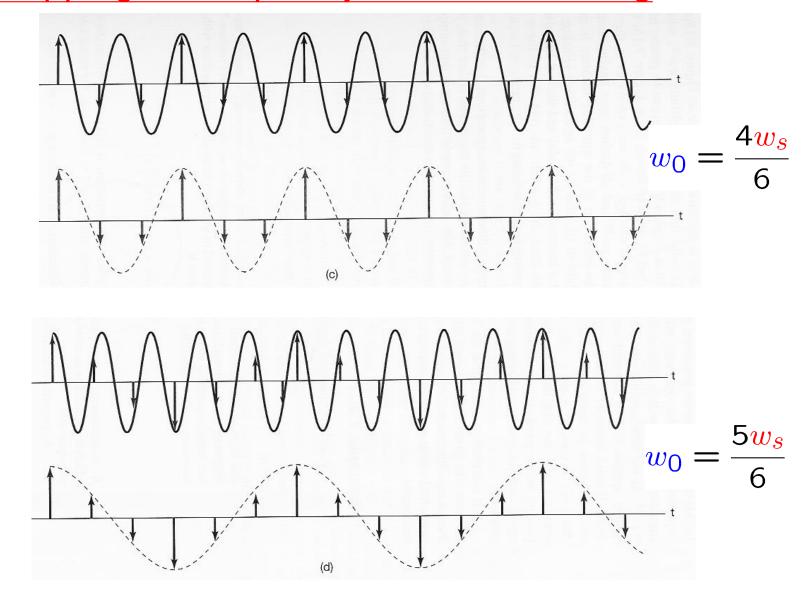




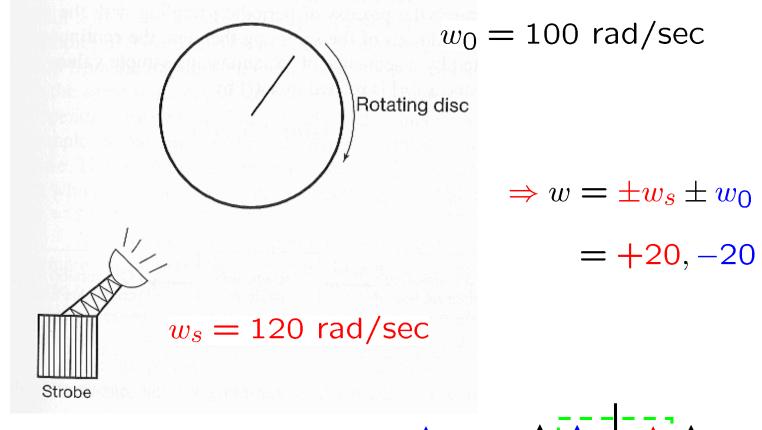
Overlapping in Frequency-Domain: Aliasing

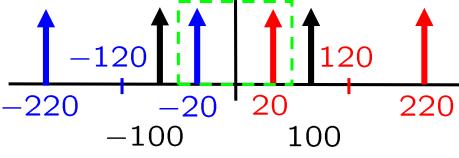


Overlapping in Frequency-Domain: Aliasing



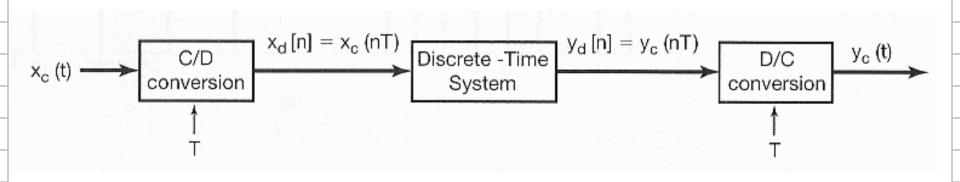
Strobe Effect:





- Representation of of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

C/D or A-to-D (ADC) and D/C or D-to-A (DAC):



C/D: continous-to-discrete-time conversion

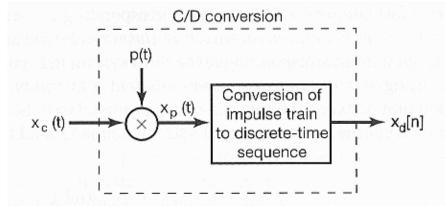
A-to-D: analog-to-digital converter

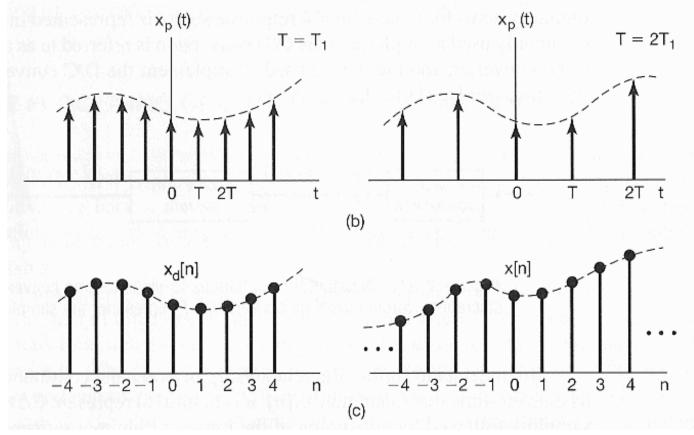
D/C: discrete-to-continous-time conversion

D-to-A: digital-to-analog converter

Feng-Li Lian © 2021 DCS14-Sampling-28

C/D Conversion:





Feng-Li Lian © 2021 DCS14-Sampling-29

 $x_d[n]$

C/D conversion

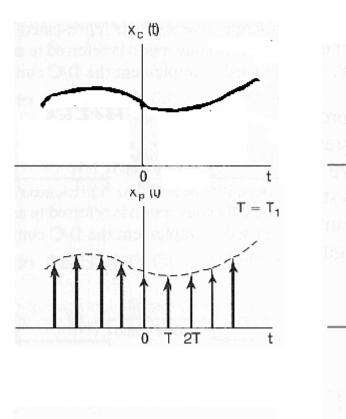
Conversion of

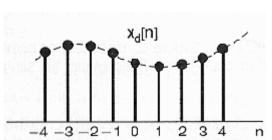
impulse train to discrete-time

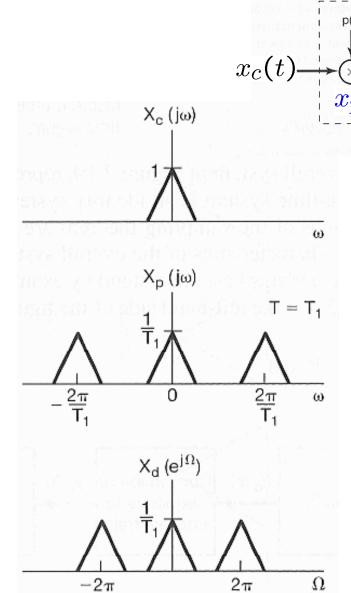
sequence

(a)

C/D Conversion:





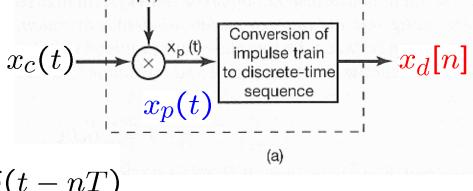


$$X_p(jw)$$

 $X_c(jw)$

$$X_d(e^{j\Omega})$$

Feng-Li Lian © 2021 **Discrete-Time Processing of Continuous-Time Signals** DCS14-Sampling-30 C/D conversion C/D Conversion: Conversion of $x_d[n]$ impulse train to discrete-time sequence X_c (jω) X_c (j ω) (a) $X_c(jw)$ ω $X_p(j\omega)$ $T = T_1$ X_p (jω) $T = T_2 = 2T_1$ $X_p(jw)$ 2π T₁ ω X_d ($e^{j\Omega}$) X_d (e $^{|\Omega}$) $X_d(e^{j\Omega})$ 2π 2π Ω



Feng-Li Lian © 2021

DCS14-Sampling-31

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x_c(nT)\delta(t-nT)$$

$$+\infty$$

$$x_p(t) = \sum_{n = -\infty}^{+\infty} x_c(nT)\delta(t - nT)$$

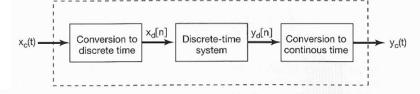
$$X_p(jw) = \sum_{n = -\infty}^{+\infty} x_c(nT)e^{-jwnT} = \frac{1}{T} \sum_{K = -\infty}^{+\infty} X_c(j(w - kw_s))$$

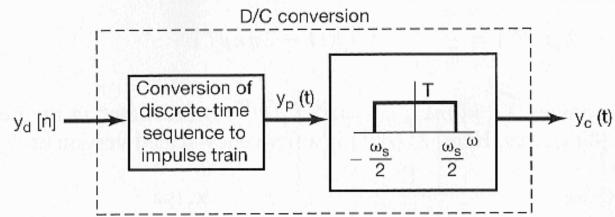
$$X_p(jw) = \sum_{n=-\infty}^{\infty} x_c(nT)e^{-int}$$
 $= \sum_{n=-\infty}^{+\infty} X_c(j(w-nws))$
 $X_d(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x_d[n]e^{-j\Omega n}$ $= \sum_{n=-\infty}^{+\infty} x_c(nT)e^{-j\Omega n}$

$$\Rightarrow X_{d}(e^{j\Omega}) = X_{p}\left(j\frac{\Omega}{T}\right) = \frac{1}{T}\sum_{K=-\infty}^{+\infty} X_{c}\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$

Feng-Li Lian © 2021 DCS14-Sampling-32

D/C Conversion:



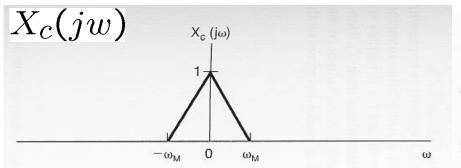


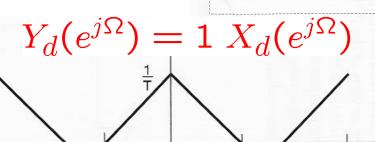
Overall



Feng-Li Lian © 2021 DCS14-Sampling-33

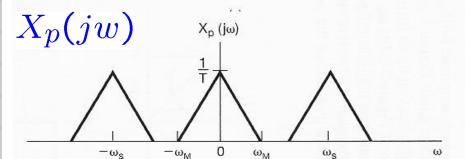
 $\omega_s T = 2\pi \Omega$

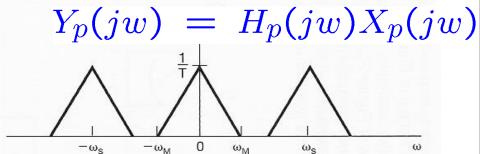




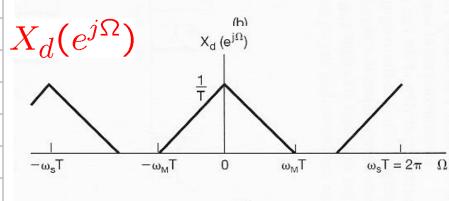
0

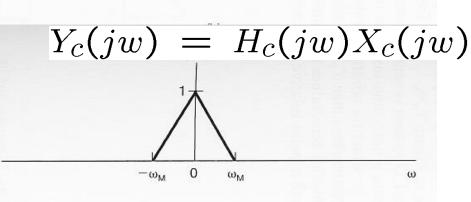
 $-\omega_M T$





 $\omega_M T$

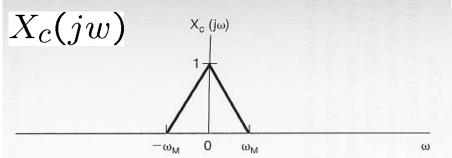


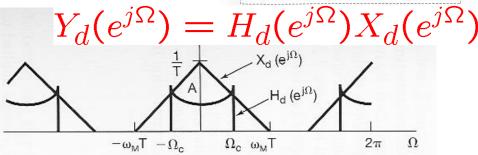


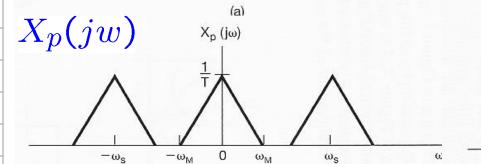
(a)

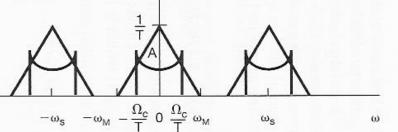
Feng-Li Lian © 2021 DCS14-Sampling-34

Frequency-Domain Illustration:

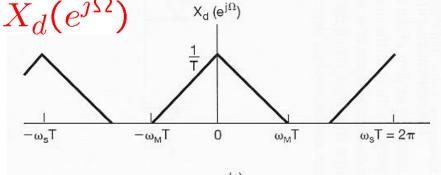


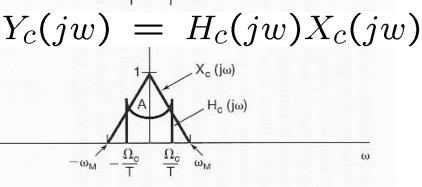






 $Y_p(jw) \stackrel{\scriptscriptstyle (d)}{=} H_p(jw)X_p(jw)$

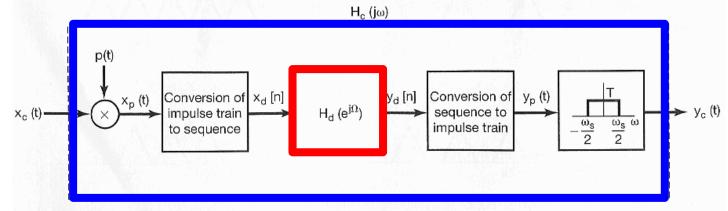




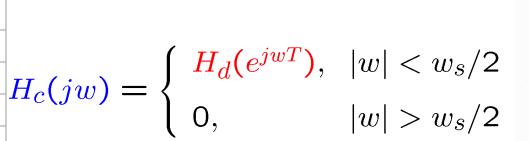
Feng-Li Lian © 2021 DCS14-Sampling-35

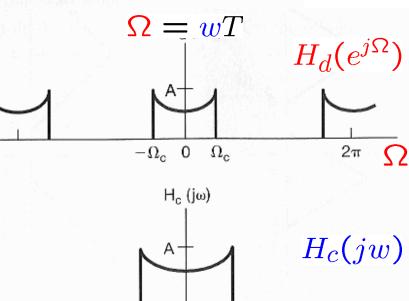
 \boldsymbol{w}

CT & DT Frequency Responses:

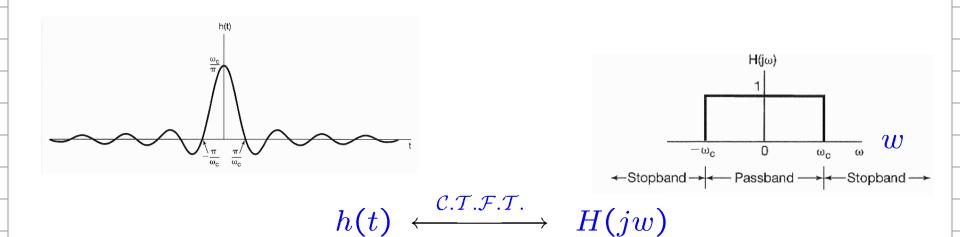


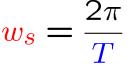
$$Y_c(jw) = X_c(jw)H_d(e^{jwT})$$





Feng-Li Lian © 2021 DCS14-Sampling-36





 $\Omega = wT$

$$h[n] \stackrel{\mathcal{D}.\mathcal{T}.\mathcal{F}.\mathcal{T}.}{\longleftrightarrow} H(e^{j\Omega})$$

The Sampling Theorem:

- If the sampling instants are sufficiently close, very little is lost by sampling a CT signal
- If the sampling points are too far apart,
 much of the information about a signal can be lost
- So, when a CT signal can be uniquely given by its sampled version?

■ Theorem 7.1: (Shannon, 1949)



- f(t): a continuous-time signal
- F(w): the Fourier transform of f(t) $\rightarrow F(w) = 0 \text{ outside } (-w_0, w_0)$

•
$$w_s$$
: sampling frequency

$$\Rightarrow$$
 If $w_s > 2w_0$

Then f(t) can be computed by:

Then
$$f(t)$$
 can be computed by

$$f(t) = \sum_{k=-\infty}^{\infty} f(kh) \frac{\sin(w_s(t-kh)/2)}{w_s(t-kh)/2}$$

 $\operatorname{sinc} \frac{w_s(t-kh)}{2}$

Note that:

- $w_N = w_s/2$: Nyquist frequency
- Reconstruction of signlas:

$$F(w) = 0$$
 when $w > w_N$

Sampling & Reconstruction

Feng-Li Lian © 2021 DCS14-Sampling-40

Reconstruction:

$$\bullet F(w) = \int_{-\infty}^{\infty}$$

•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$

$$J-\infty$$
 $(t) = \frac{1}{m} \int_{-\infty}^{\infty} e^{iwt} F(w) dw$

$$F_{s}\left(\omega
ight)$$

$$\sum_{s=0}^{\infty} F(w + kw_s)$$

•
$$F_s(w) = \frac{1}{h} \sum_{k=-\infty}^{\infty} F(w + kw_s)$$

= $\sum_{k=-\infty}^{\infty} C_k e^{-ikhw}$

$$v_s$$
)

$$C_k = \frac{1}{w_s} \int_0^{w_s} e^{ikhw} F_s(w) dw$$

$$k = -\infty$$

$$= \sum_{k=-\infty}^{\infty} f(kh)e^{-ikhw}$$

$$|y| \leq \frac{w_s}{2}$$

$$\bullet F(w) = \begin{cases} hF_s(w) & |w| \le \frac{w_s}{2} \\ 0 & |w| > \frac{w_s}{2} \end{cases}$$

Shannon Reconstruction:

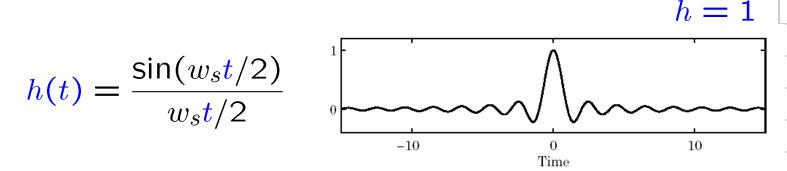
• For periodic sampling of band-limited signals

$$f(t) = \sum_{k=-\infty}^{\infty} f(kh) \frac{\sin(w_s(t-kh)/2)}{w_s(t-kh)/2}$$

However, it is NOT a caucal operator

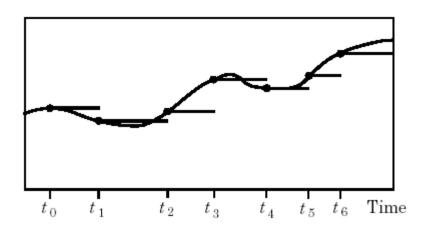
Shannon Reconstruction:

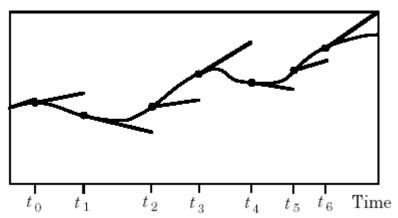
• Let's look at the impulse response:



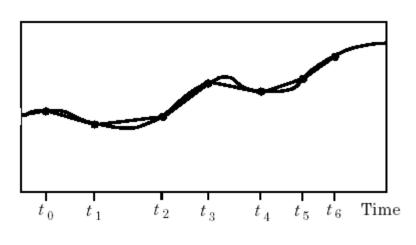
- The weights are 10% after 3 samples
 < 5% after 6 samples
- This construction has a delay
 ⇒ Not good for control
- Only applied to periodic sampling

Zero-Order Hold (ZOH) & First-Order Hold (FOH)

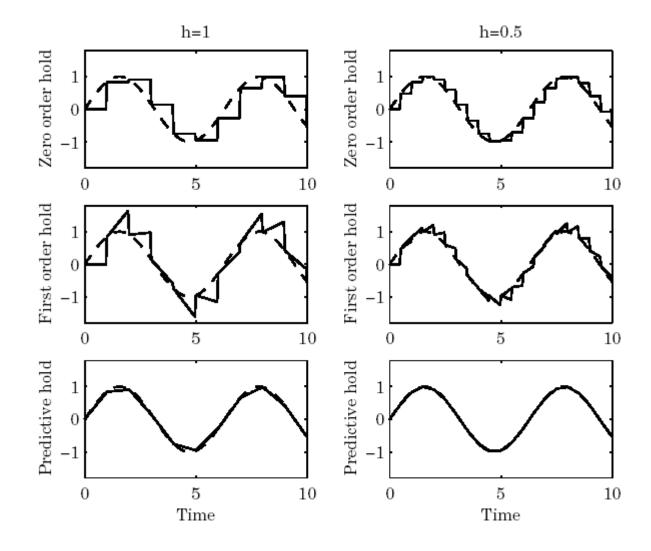




- They are caucal operators
- Predictive FOH:
 - It is NOT caucal
 But, can be replaced
 by model prediction



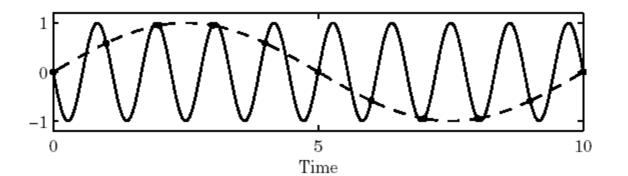
• Sinusoidal signal with h = 1 and h = 0.5



Aliasing or Frequency Folding (7.4)

Aliasing:

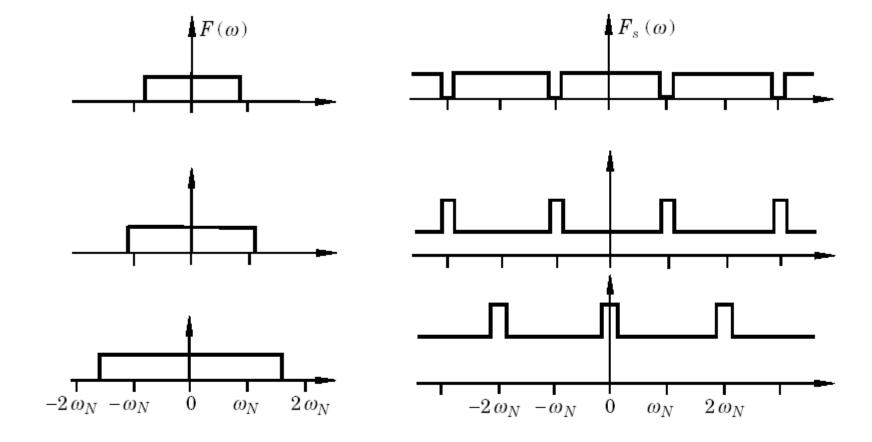
- Two signals with frequency, 0.1 Hz and 0.9 Hz
- They have the same values at all sampling instants



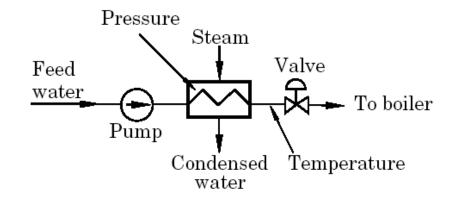
Fourier transform of sampled signal:

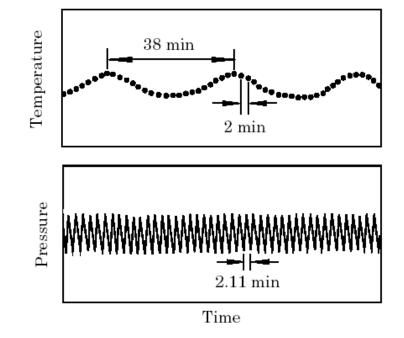
•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$

•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$
 • $F_s(w) = \sum_{k=-\infty}^{\infty} f(kh) e^{-ikhw}$



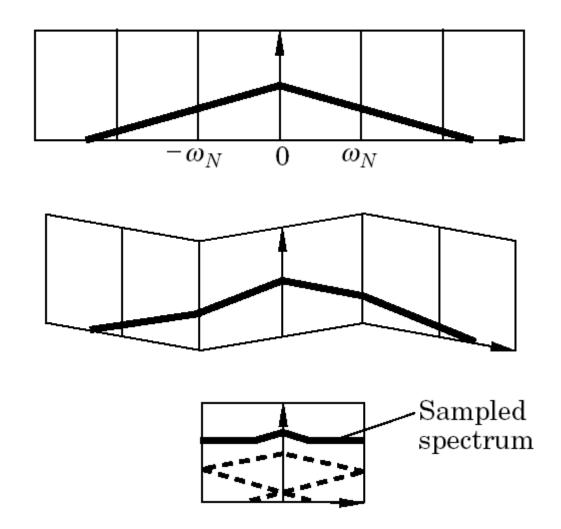
Example 7.1: Feed-water heater in a ship boiler



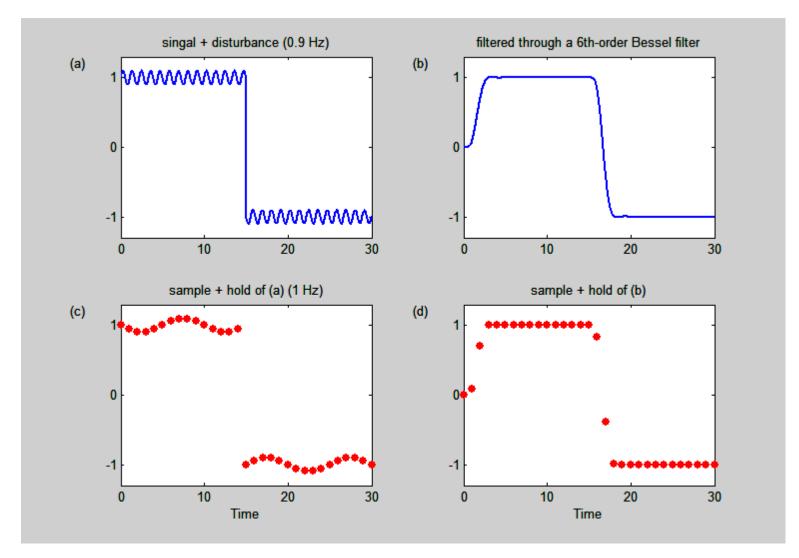


- $w_s = \frac{2\pi}{2} = 3.142 \text{ rad/min}$
- $w_0 = \frac{2\pi}{2.11} = 2.978 \text{ rad/min}$
- $w_s w_0 = 0.1638 \text{ rad/min}$ $\Rightarrow T_s = 38 \text{ min}$

Frequency Folding

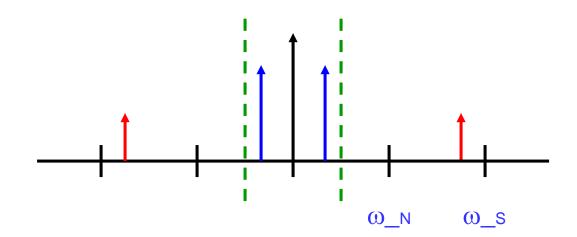


Pre-Sampling Filter in Example 7.2:



Pre-Sampling Filter in Example 7.2:

- With a sinusoidal perturbation (0.9Hz)
- Sampling frequency = 1 Hz

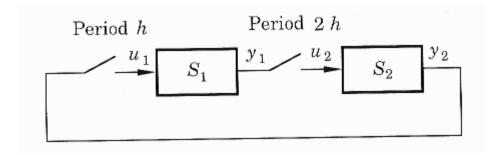


Post-Sampling Filter:

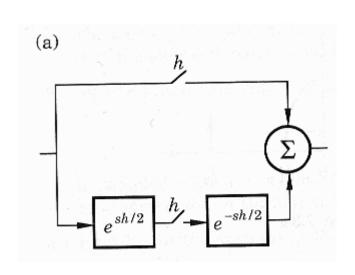
- Because signal from D/A is piecewise constant
 - May excite some oscillatory modes
 - So, use higher-order hold! such as piecewise linear signal

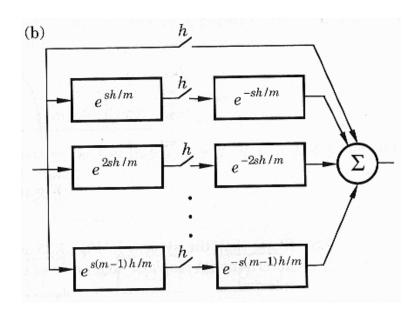
Further Readings: Multi-Rate Sampling

Multi-Rate System:



Switch Decomposition:





Multi-Rate Systems

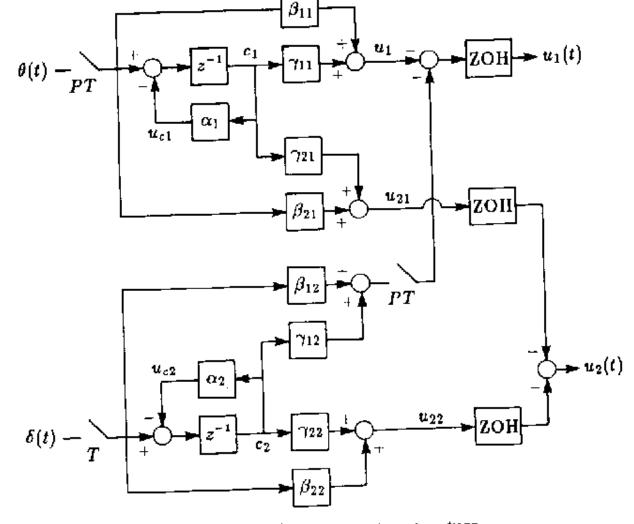


Fig. 7. TLA compensator structure.

M.C. Berg, N. Amit, J.D. Powell, "Multirate digital control system design", IEEE-TAC 33(12): 1139-1150, Dec 1988