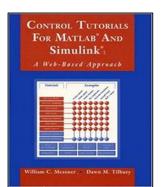
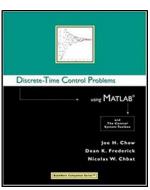

### Spring 2021


# 數位控制系統 Digital Control Systems


DCS-02 Project





Feng-Li Lian NTU-EE Feb – Jun, 2021





- Time: Tuesdays 1:30pm-4:20pm
  - Room: MD-303
  - Office Hours: by e-mail appointment
  - Website: http://cc.ee.ntu.edu.tw/~fengli/ Teaching/DigitalControl
- Instructor:
  - 連豊力(Feng-Li Lian) Office: MD-717

  - Email: fengli@ntu.edu.tw Phone: 02-3366-3606
- Grading:
  - Homework (30%) bi-week

  - Midterm (30%)on x/y Project (40%)on x/y

- Computer-Controlled Systems:
  - Theory & Design, 3rd. Ed., (1997),
    - by Astrom & Wittenmark Discrete Time Control Problems Using Matlab and the Control System Toolbox,
  - (2003),by Chow, Frederick & Chbat
- References:
  - Digital Control of Dynamic Systems, 3rd Ed., (1998), by Franklin, Powell, Workman
    - Real-Time Systems, (1997),

by Bennett

- by Krishna & Shin Real-Time Computer Control:
  - An Introduction, 2nd Ed., (1994),
- Control in an Information Rich World, Report of the Panel on Future Directions
- in Control, Dynamics, and Systems. http://www.cds.caltech.edu/~murray/cdsp
  - anel/report/cdspanel-15aug02.pdf 01/20/21

### **Grading: Term Project (60%)**

## Team members:

- About 1-3 students of different levels
- Auditing/Visiting students are encouraged to join a team

## Subject/Title:

- Theoretical study
  - Study any digital control theory and derive possible new results
- Simulation study
  - Detailed and thorough simulation study of one application
- Software package development of digital control systems
  - Develop toolkits similar to CCSDemo and Control Tutorial

## Agenda:

- 5/3: Form a team and submit one-page proposal
- 6/14: Progress Report
- 6/25: Final Report

- "Economy" Class:
  - Only 1 student
  - Simulation study of one typical control application
    - Such as flight, DVD/HD, motor, robot, etc.
    - Should include modeling, (timing) analysis, design, and simulation validation
- "Business" Class:
  - >= 2 students
  - >= 10 digital-control-related IEEE journal papers
  - Could only focus on one or two of the following areas:
    - Modeling, (system or timing) analysis, design, etc.
  - Strongly suggest to re-do the simulation results in the survey papers
- "First" Class:
  - <= 3 students</li>
  - >= 20 digital-control-related IEEE journal papers
  - Generate good/nice (possibly new) theoretical results
  - Develop different (possibly useful) digital-control-related software package

### **Grading: Term Project (60%)**

## Agenda:

- 5/1: Submit one-page proposal
  - Including title, team members, affiliation, etc., and one or two paragraphs describing your ideas
- 6/19: Presentation slides and Video and other files:
  - > One zipped file of the related electronic files including videos, documentation (docx) or presentation (pptx), matlab (m) files, etc.
    - » Presentation slides in PPTX
    - » Presentation video of 10-15 mins
    - » Submit the report to NTU-Cool Deadline: By 11pm, 6/19
- 6/29: Grading (Evaluation) Report
  - » Please submit the grading (evaluation) report to NTU-Cool Deadline: By 11pm, 6/29

- Proposal by 5/1, 2021:
  - Page 1:
    - Title:
    - Team: Name, ID, Department
    - Date:
  - Page 2:
    - Systems:
      - Edit a few paragraphs/keywords to describe the specifications of the system and design goals
      - > Might include 1-2 pictures
  - Page 3:
    - Models:
      - > Continuous-Time Models: Transfer Function, State Space
      - > Discrete-Time Models: Transfer Function, State Space
  - Page 4:
    - References: Books, Papers, Websites, etc.

## 6/19: Presentation Report

- Presentation Slides, Video, Other files by 6/19, 2021:
  - Page 1:
    - Title:
    - Team: Names, IDs, Departments
    - Date:
    - etc.
  - Pages 2:
    - Outline and Summary
  - Pages 3:
    - Systems:
      - Edit a few paragraphs/keywords to describe the specifications of the system and design goals
      - > Might include 1-2 pictures

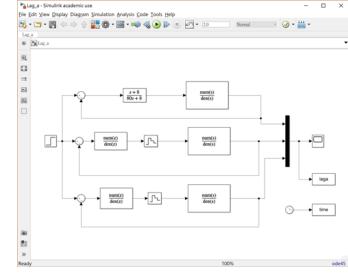
## 6/19: Presentation Report

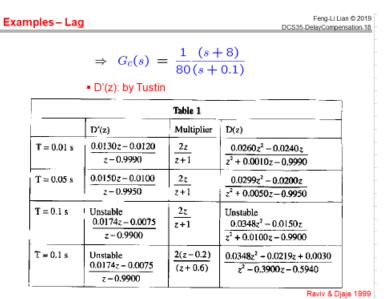
- Presentation Slides and Video by 6/19, 2021:
  - Pages 4, etc.:
    - Modeling:
      - > CT vs DT models, (TF/SS) in terms of different sampling times
    - Analysis:
      - > Stability, Controllability, Observability, in terms of different sampling times
    - Design:
      - > Different controllers, observers, etc., vs different sampling times, performance specification
    - Simulation studies with:
      - > Different sampling times
      - > Different design parameters
      - > Different performance specifications
  - Page zzz:
    - References: Books, Papers, Websites, etc.

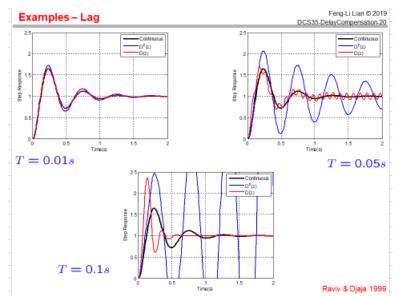
- Grading (60%):
  - Writing style & contents (10%)
  - Technical content (20%)
  - Evaluation by other students, teaching assistant, instructor (20%)
  - Your evaluation quality (10%)

### **Grading: Term Project (60%)**

# Grading (60%):


- Writing style & contents (10%)
  - > Title
    - » Does "title" actually and precisely reflect the content of this report?
  - Introduction
    - » Does it provide enough background information about this study?
    - » Are references properly cited?
  - > Main results, including theoretical derivation or simulation study
    - » Do it explicitly and concisely describe the results?
    - » Are they good or solid enough to give readers any useful information?
  - > Discussions, summary/conclusions
    - » Does it conclude anything and provide good suggestion for the future?
  - > References
    - » Does it list enough cited papers?
- Technical content (20%)
  - > The contents on main result and discussions

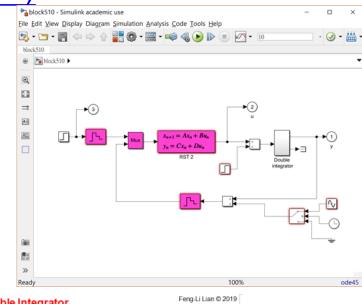

# Grading (60%):

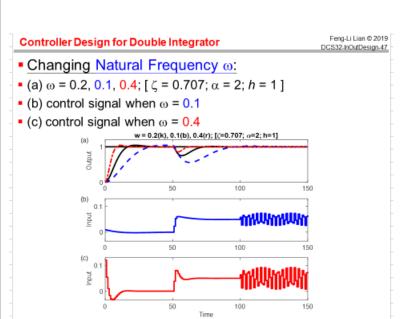

- Evaluation by other students, teaching assistant, instructor (20%)
- Your evaluation quality (10%)
- Suggested Format:
  - > Each group should use PPTX to give a formal presentation.
  - > Every group member should video-record 10-15-min talk.
  - > Every student should grade other presentation precisely.

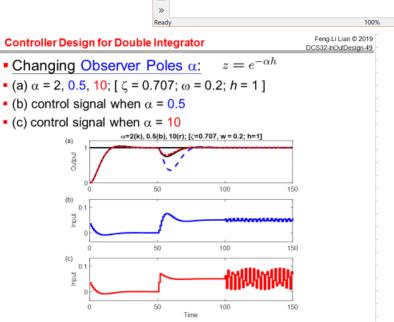
### **Grading: Term Project (40%)**

- Grading (40%):
  - Report (30% from group performance):
    - Technical content (20%)
      - > Simulation studies with:
        - » Different sampling times
        - » CT vs DT models, in terms of different sampling times







02/22/19

### **Grading: Term Project (40%)**

- Grading (40%):
  - Report (30% from group performance):
    - Technical content (20%)
      - > Simulation studies with:
        - » Different performance specifications
        - » Different controllers, observers, etc., vs different sampling times, performance specification







## **Grading: Term Project (40%)**

- Grading (40%):
  - Presentation (10% from individual performance):
    - Evaluation by instructor (5%)
    - Evaluation by other students (5%)
    - Suggested Format:
      - > Each group should use PowerPoint to give a formal presentation.
      - > Every group member should provide at least 7-min talk.
      - > After everyone's presentation, we will have Question-&-Answer session!

#### **Introduction: Course Outline**

- Digital Control Systems
  - From Analog to Digital World
  - Design Consideration
  - Z-transform
  - Controller Design
- Computer Control Systems (Single Centralized Control)
  - Real-Time Operation Systems
  - Analog to Digital
  - Digital to Analog
- Networked Control Systems (Multiple Distributed Control)
  - Control Networks Protocols
  - Networked Controllers & Managers
  - Networked Sensors
  - Networked Actuators





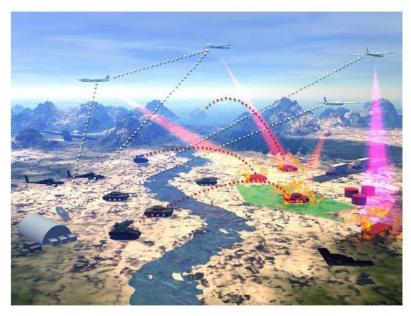
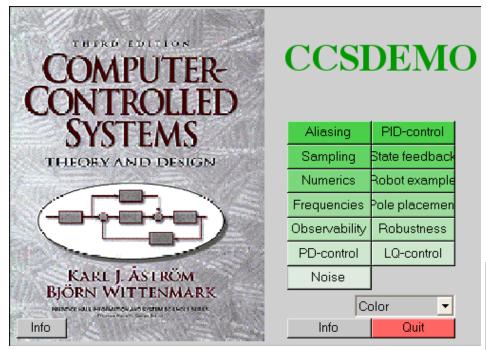
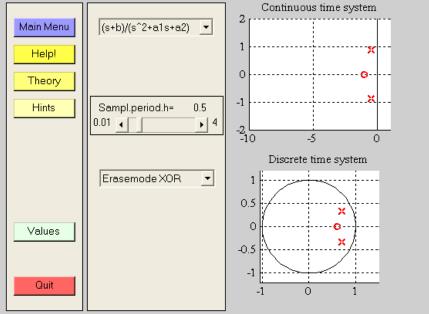
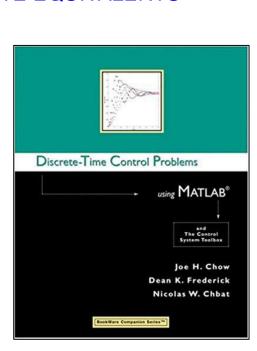





Figure 3.2. Battle space management scenario illustrating distributed command and control between heterogeneous air and ground assets. Figure courtesy of DARPA.

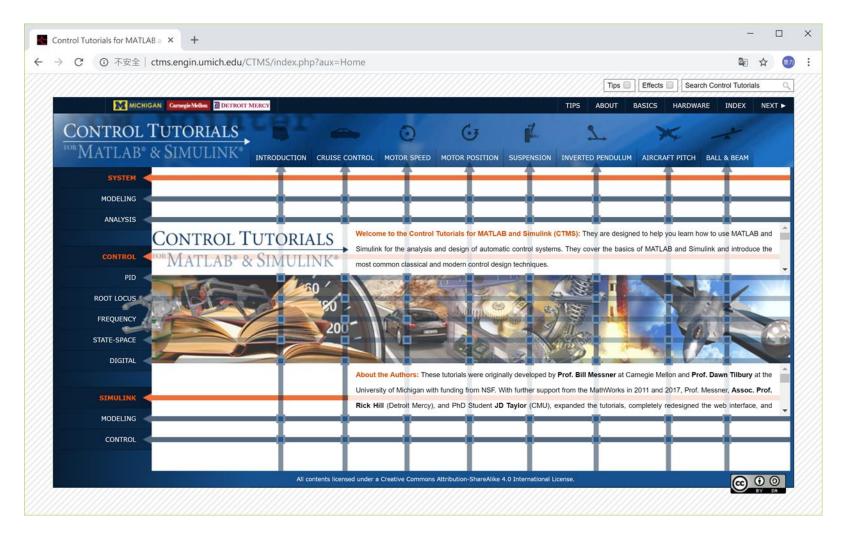
#### **Introduction: Computer Aided Tools**


CCSDEMO by Astrom & Wittnemark of Lund





### **Introduction: Computer Aided Tools**


- Discrete Time Control Problems
  Using Matlab and the Control System Toolbox, (2003)
  - by Joe H. Chow, Dean K. Frederick, Nicholas W. Chbat
- Table of Content:
  - 1. INTRODUCTION
  - 2. SINGLE-BLOCK MODELS AND THEIR RESPONSES
  - 3. BUILDING AND ANALYZING MULTI-BLOCK MODELS
  - 4. STATE-SPACE MODELS
  - 5. SAMPLE-DATA CONTROL SYSTEMS
  - 6. FREQUENCY RESPONSE, DIGITAL FILTERS, AND DISCRETE EQUIVALENTS
  - 7. SYSTEM PERFORMANCE
  - 8. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL
  - 9. FREQUENCY-RESPONSE DESIGN
  - 10. STATE-SPACE DESIGN METHODS
  - A: Models Of Practical Systems.
    - Ball and Beam System
    - Inverted Pendulum
    - Electric Power System
    - Hydro-Turbine and Penstock
  - B: Root-Locus Plots. Discrete Fourier Transform.
  - C: Matlab Commands.



#### **Introduction: Computer Aided Tools**

# Control Tutorial for Matlab & Simulink by Tilbury of UMich & Messner of CMU

http://ctms.engin.umich.edu/CTMS/

