Spring 2019

數位控制系統 Digital Control Systems

DCS-34 Discretized Controller – Design by Emulation

Feng-Li Lian

COMPUTER-CONTROLLED SYSTEMS

·----

KARL J. ÅSTRÖM BJÖRN WITTENMARK

-

NTU-EE Feb19 – Jun19

Design by Emulation – Tustin's Method

• Tustin's method: $\frac{U(s)}{E(s)} = D(s) = \frac{a}{s+a}$ $\Rightarrow \frac{U(z)}{E(z)} = D(z) = \frac{a}{\frac{2}{h} \left(\frac{1-z^{-1}}{1+z^{-1}}\right) + a}$ $\Rightarrow s = \frac{2}{h} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)$ for every occurance of *s* in any *D(s)*yields a *D(z)* on the trapezoidal integration

Design by Emulation – Tustin's Method MATLAB's command: c2d C2D Conversion of continuous-time systems to discrete time.

SYSD = C2D(SYSC, TS, METHOD)

converts the continuous system SYSC to a discrete-time system SYSD with sample time TS.

Feng-Li Lian © 2019

DCS34-EmulationDesign-10

The string METHOD selects the discretization method among the following:

'zoh'	Zero-order hold on the inputs.	
'foh'	Linear interpolation of inputs (triangle appx.)	
'tustin'	Bilinear (Tustin) approximation.	
'prewarp'	Tustin approximation with frequency prewarping. The critical frequency Wc is specified last as in C2D(SysC, Ts, 'prewarp', Wc)	
'matched'	Matched pole-zero method (for SISO systems only)	

Astrom & Wittenmark 1997

Approximations introduce frequency distortion

$$G(z) = G(s)|_{z=e^{sh}} \qquad s = \frac{2}{h} \frac{z-1}{z+1}$$

$$\Rightarrow G(e^{iwh}) = \frac{1}{iwh} (1 - e^{-iwh}) G\left(\frac{2}{h} \cdot \frac{e^{iwh} - 1}{e^{iwh} + 1}\right)$$

$$\Rightarrow \frac{2}{h} \cdot \frac{e^{iwh} - 1}{e^{iwh} + 1} = \frac{2}{h} \cdot \frac{e^{iwh/2} - e^{-iwh/2}}{e^{iwh/2} + e^{-iwh/2}}$$

$$= i \cdot \left(\frac{2}{h} \tan\left(\frac{wh}{2}\right)\right)$$

$$= i \cdot w'$$

$$G(z = e^{iwh}) = G(s = iw) \qquad G\left(i \cdot \left(\frac{2}{h} \tan\left(\frac{wh}{2}\right)\right)\right) = G\left(i \cdot w'\right)$$
Astron & Wittenmark 1997

Design by Emulation – Tustin's Method

Feng-Li Lian © 2019 DCS34-EmulationDesign-16

Approximations introduce frequency distortion

$$G(z) = G(s)|_{z = e^{sh}}$$

$$z = e^{iw} \iff s = iw'$$

$$\Rightarrow w' = \frac{2}{h} \tan\left(\frac{wh}{2}\right)$$
$$\Rightarrow w = \frac{h}{2} \tan^{-1}\left(\frac{w'h}{2}\right)$$
$$\approx w' \left(1 - \frac{(w'h)^2}{12}\right)$$

Feng-Li Lian © 2019 **Design by Emulation – MPZ** DCS34-EmulationDesign-21 Matched Pole-Zero (MPZ) method: Case 2: • $D(s) = K_c \frac{s+a}{s(s+b)}$ $\Rightarrow D(z) = K_d \frac{(z+1)(z-e^{-ah})}{(z-1)(z-e^{-bh})}$ • By the Final Value Theorem: $\Rightarrow K_d = K_c \frac{a}{2b} \left(\frac{1 - e^{-bh}}{1 - e^{-ah}} \right)$ Franklin et al. 2002 Feng-Li Lian © 2019 **Design by Emulation – MPZ** DCS34-EmulationDesign-22

Matched Pole-Zero (MPZ) method:
The same power of z in the num & den of D(z):

$$\frac{U(z)}{E(z)} = D(z) = K_d \frac{1 - \alpha z^{-1}}{1 - \beta z^{-1}}$$

$$\alpha = e^{-ah} \& \beta = e^{-bh}$$

$$\Rightarrow u[k+1] = \beta u[k] + K_d \left[e[k+1] - \alpha e[k] \right]$$

- Modified Matched Pole-Zero (MMPZ) method:
 - u[k+1] depends only on e[k], but not e[k+1]

$$D(s) = K_c \frac{s+a}{s(s+b)}$$

$$\Rightarrow D(z) = K_d \frac{(z-e^{-ah})}{(z-1)(z-e^{-bh})}$$

$$\Rightarrow K_d = K_c \frac{a}{b} \left(\frac{1 - e^{-bh}}{1 - e^{-ah}} \right)$$

$$\Rightarrow \ u[k+1] = (1+e^{-bh})u[k] - e^{-bh}u[k-1] \\ + K_d \left[e[k] - e^{-ah}e[k-1] \right]$$

Design by Emulation – MMPZ

Design by Emulation – Digital PID-Controllers

Feng-Li Lian © 2019)CS34-EmulationDesign-28

• The "textbook" version of the **PID-controller**:

$$u(t) = K\left(e(t) + \frac{1}{T_i}\int^t e(s) \, ds + T_d \, \frac{de(t)}{dt}\right) \qquad e = u_c - y$$

• $e = u_c - y$: difference between command and output

- K: gain or proportional gain
- T_i: integration time or reset time
- T_d : derivative time

Astrom & Wittenmark 1997 -

 Design by Emulation – Digital PID-Controllers
 Feng-Li Lian @ 2019 DCS34-EmulationDesign:31

 • Discrete-time PID:
 u(kh) = P(kh) + I(kh) + D(kh)

 • Can be written as:
 $R(q)u(kh) = T(q)u_c(kh) - S(q)y(kh)$

 with $R(q) = (q - 1)(q - a_d)$, S(q), and T(q) of 2nd order

Astrom & Wittenmark 1997

Feng-Li Lian © 2019

DCS34-EmulationDesign-32

Design by Emulation – Digital PID-Controllers

Coefficients in different approximations:

	Special	Tustin	Ramp Equivalence
s_0	$K(1+b_d)$	$(1+b_d) K(1+b_i+b_d)$	
s_1	$-K(1+a_d+2b_d-b_i)$	-K(1+a	$_d + 2b_d - b_i(1-a_d)\Big)$
s_2	$K(a_d + b_d - b_i a_d)$	K(a)	$(a_d + b_d - b_i a_d)$
t_0	Kb	and sveget for a	$K(b+b_i)$
t_1	$-K(b(1+a_d)-b_i)$	-K(b(1	$(a_d) - b_i(1 - a_d)$
t_2	$Ka_d(b-b_i)$	ni zini i svori	$Ka_d(b-b_i)$
a_d	$rac{T_d}{Nh+T_d}$ $+$	$\frac{2T_d-Nh}{2T_d+Nh}$	$\exp\left(-rac{Nh}{T_d} ight)$
b_d	Na_d	$\frac{2NT_d}{2T_d+Nh}$	$\frac{T_d}{h}\left(1-a_d\right)$
b_i	$rac{h}{T_i}$	$rac{h}{2T_i}$	$rac{h}{2T_i}$

