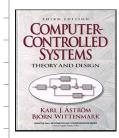
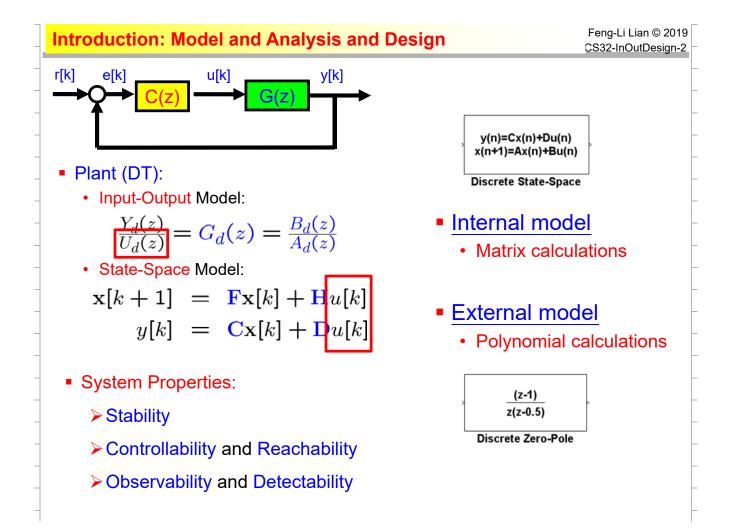


Feb19 – Jun19





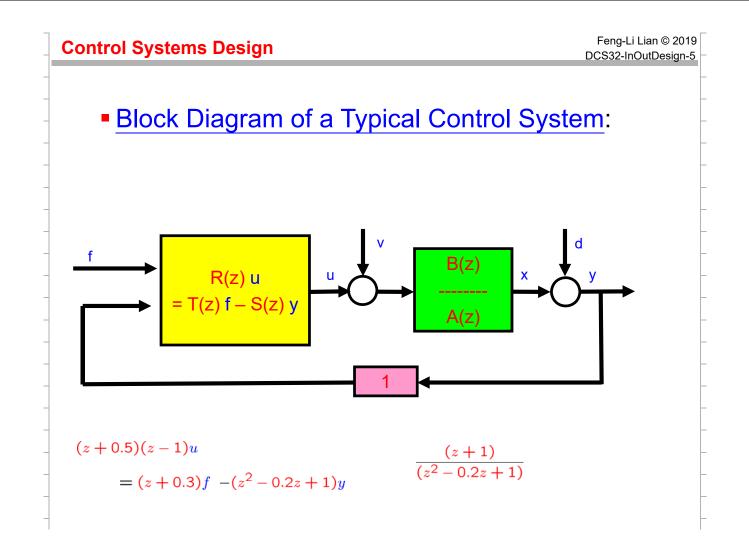
Outline

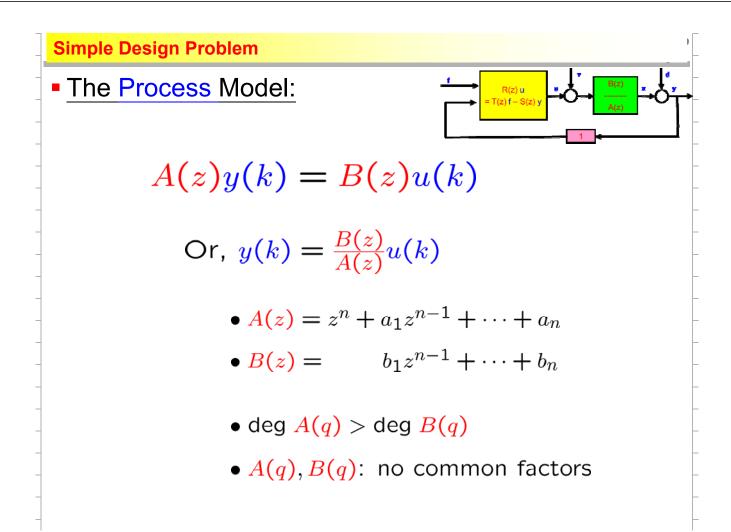
- Process and Controller Models
 - By Rational Transfer functions
- Poles and Zeros
- Command Signals
- Disturbance Response
- Case Study:
 - Double Integrator

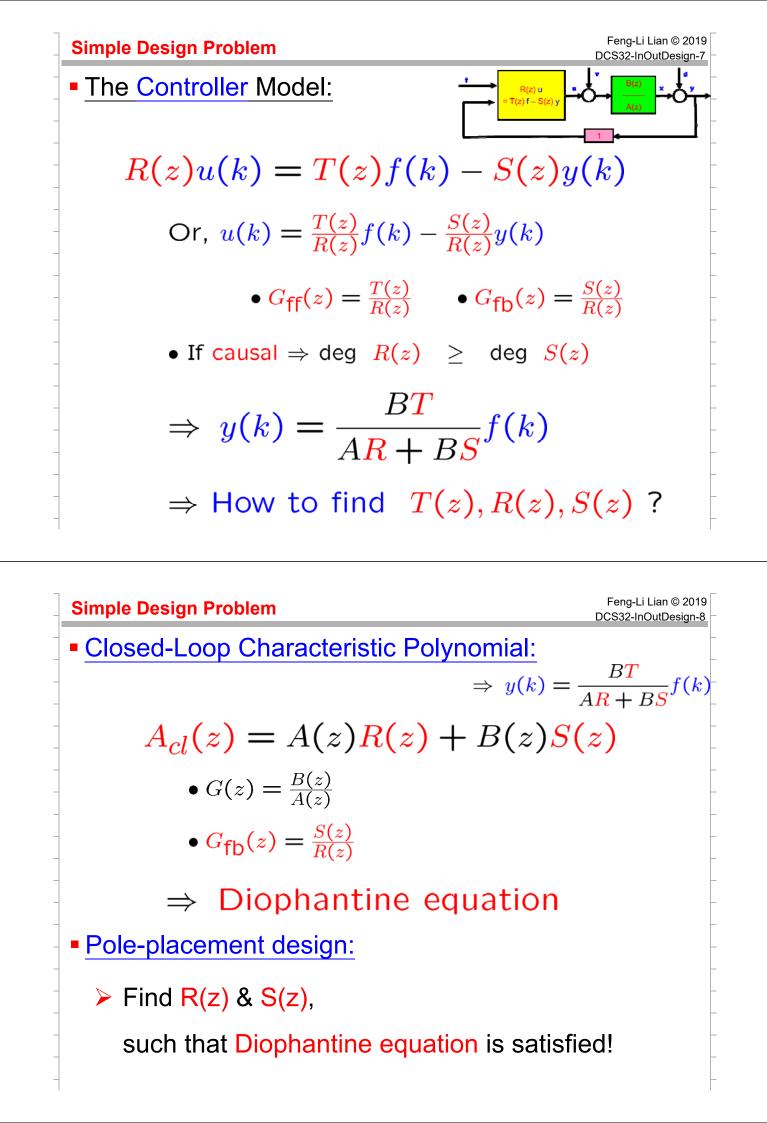
Control Systems Design

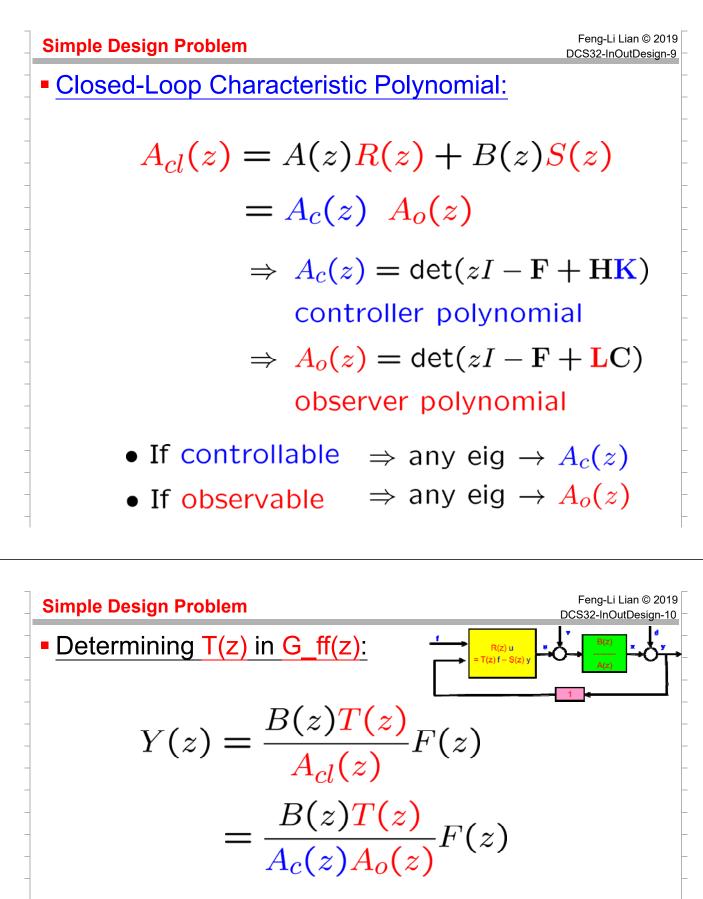
Feng-Li Lian © 2019)CS32-InOutDesign-4

- Control System Design:
 - Command signal following (reference)
 - Load disturbance (actuator)
 - Measurement noise (sensor)
 - Process disturbance (un-modeled dynamics)
- Design Parameters:
 - Closed-loop characteristic polynomial
 - Sampling period





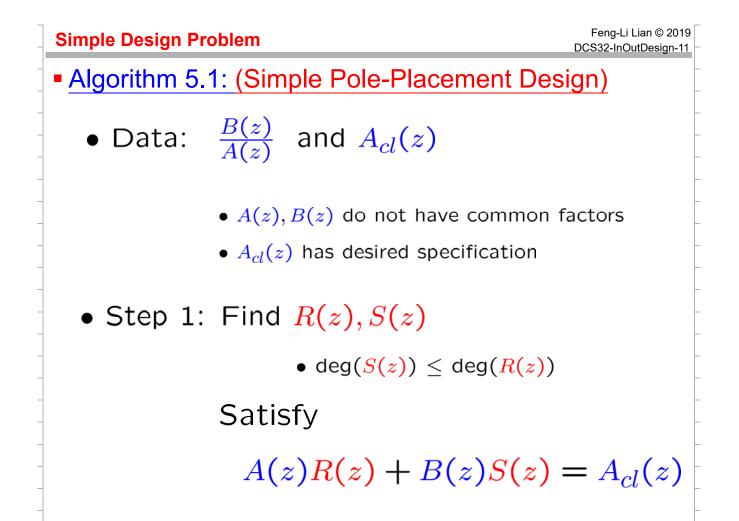




• Let $T(z) = t_o A_o(z)$

$$\Rightarrow Y(z) = \frac{t_o B(z)}{A_c(z)} F(z)$$

• t_o is for desired static gain



Simple Design ProblemFeng-Li Lian @ 2019
DCS32-InOutDesign12• Algorithm 5.1: (Simple Pole-Placement Design)• Step 2: Write $A_{cl}(z) = A_c(z)A_o(z)$
• $deg(A_o(z)) \leq deg(R(z))$ Select $T(z) = t_0A_0(z)$
• $t_o = \frac{A_c(1)}{B(1)}$ • Controller Law:R(z)u(k) = T(z)f(k) - S(z)y(k)• Response to command signals:

 $A_c(z)y(k) = t_o B(z)f(k)$

Simple Design Problem

Example 5.1: (Control of a double integrator)

$$\frac{1}{s^2} \iff \frac{h^2(z+1)}{2(z-1)^2}$$
$$\Rightarrow A(z) = (z-1)^2$$
$$B(z) = \frac{h^2}{2}(z+1)$$

• Diophantine equation

$$A_{cl}(z) = (z-1)^2 R(z) + \frac{h^2}{2} (z+1) S(z)$$

Simple Design Problem

Feng-Li Lian © 2019 DCS32-InOutDesign-14

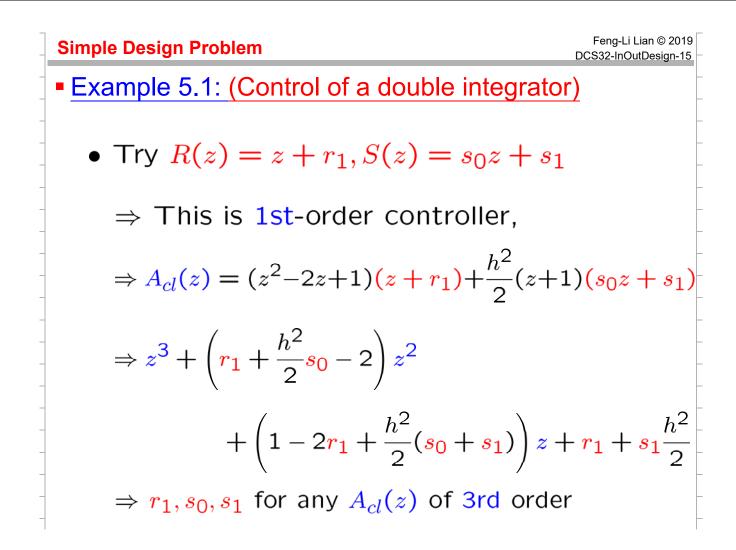
Example 5.1: (Control of a double integrator)

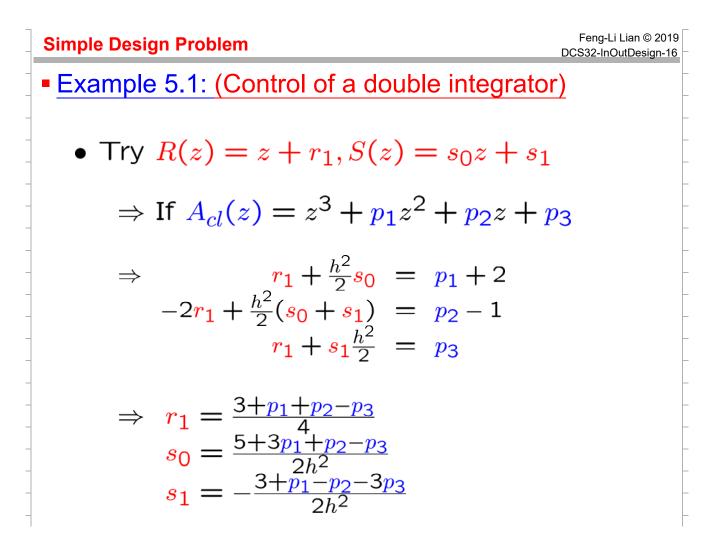
• Try
$$R(z) = 1, S(z) = s_0$$

 \Rightarrow This is P controller, b/c $G_{fb} = \frac{S(z)}{R(z)}$

$$\Rightarrow A_{cl}(z) = (z^2 - 2z + 1) + \frac{s_0 h^2}{2} (z + 1)$$

 \Rightarrow Impossible for any $A_{cl}(z)$ of 2nd order





Example 5.1: (Control of a double integrator)

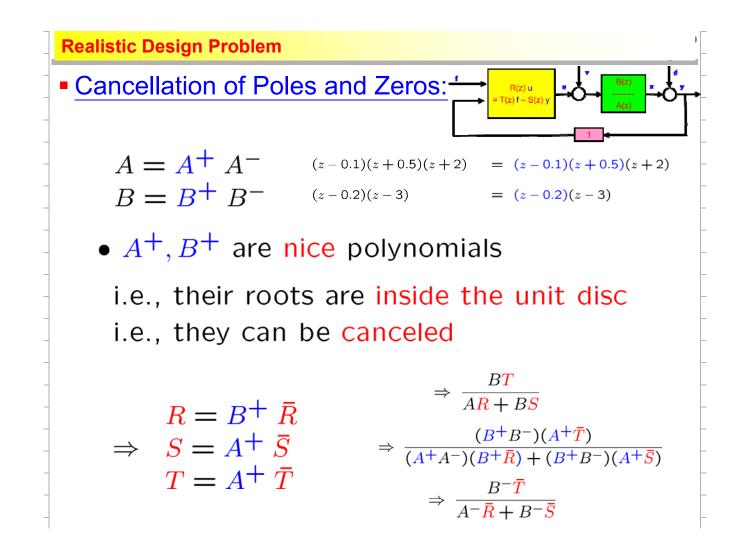
•
$$T(z) = t_0 A_o(z)$$

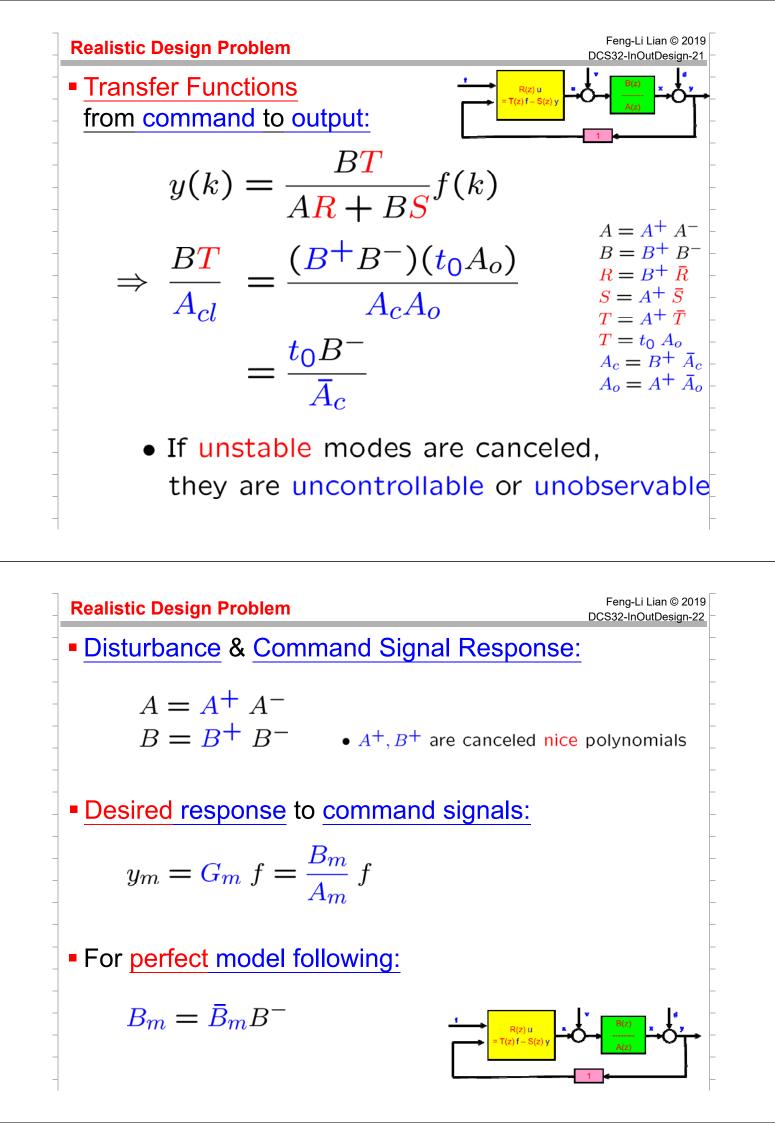
b/c:
$$A_{cl}(z) = A_c(z)A_o(z)$$

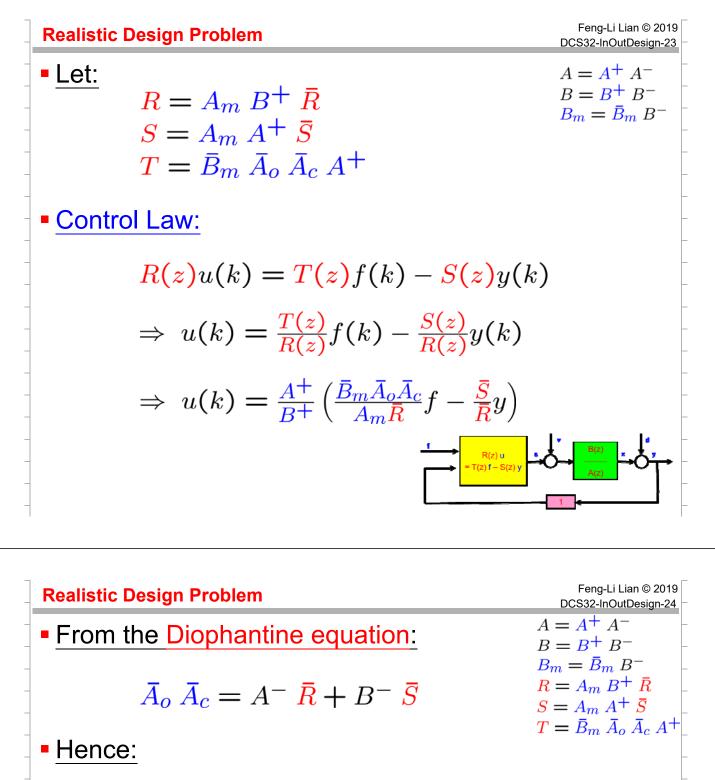
 \Rightarrow $A_c(z)$ of 2nd order

 $A_o(z)$ of 1st order

And, let
$$t_0 = \frac{A(1)}{B(1)}$$







$$\Rightarrow \frac{\bar{B}_m}{A_m\bar{R}}(\bar{A}_o\bar{A}_c) = \frac{\bar{B}_m(A^-\bar{R}+B^-\bar{S})}{A_m\bar{R}}$$

$$= \frac{\bar{B}_mA^-}{A_m} + \frac{\bar{B}_mB^-\bar{S}}{A_m\bar{R}}$$

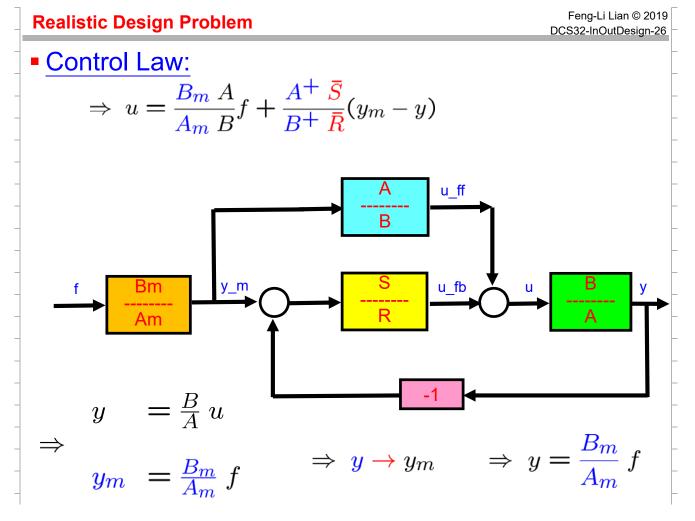
$$y_m = \frac{B_m}{A_m}f$$

$$= \frac{B_mA^-}{A_m\bar{B}^-} + \frac{B_m\bar{S}}{A_m\bar{R}}$$

$$\Rightarrow u(k) = \frac{A^+}{B^+} \left(\left(\frac{B_mA^-}{A_m\bar{B}^-} + \frac{B_m\bar{S}}{A_m\bar{R}} \right) f - \frac{\bar{S}}{\bar{R}}y \right)$$

Realistic Design Problem
 Fengli Lian
$$2019$$

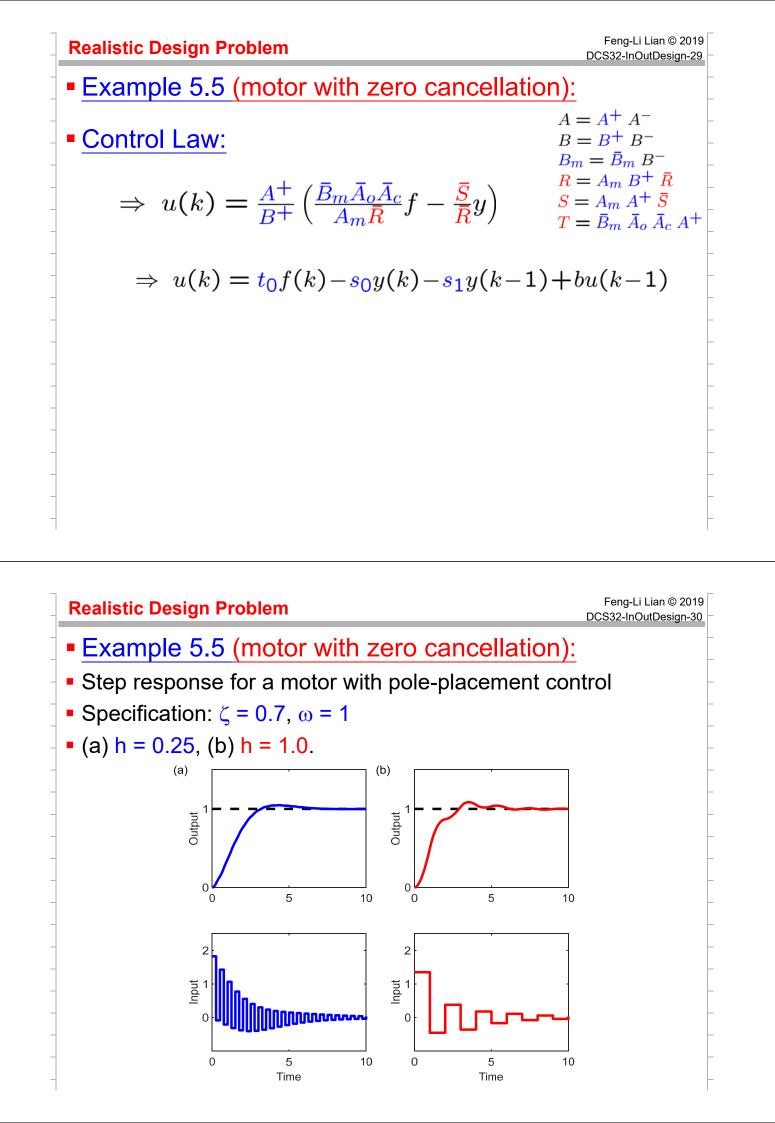
 • Control Law:
 $A = A + A^{-}$
 $\Rightarrow u(k) = \frac{A^{+}}{B^{+}} \left(\left(\frac{B_m A^{-}}{A_m B^{-}} + \frac{B_m \bar{S}}{A_m R} \right) f - \frac{\bar{S}}{R} y \right)$
 $B = B^{+} B^{-}$
 $\Rightarrow u(k) = \frac{A^{+}}{B^{+}} \left(\left(\frac{B_m A^{-}}{A_m B^{-}} + \frac{B_m \bar{S}}{A_m R} \right) f - \frac{\bar{S}}{R} y \right)$
 $B = B^{+} B^{-}$
 $y_m = \frac{B_m}{A_m} f$
 $\Rightarrow f = \frac{A_m}{B_m} y_m$
 $B = B^{+} \bar{B}^{-}$
 $\Rightarrow u = \frac{B_m A}{A_m B} f + \frac{A^{+} \bar{S}}{B^{+} \bar{R}} (y_m - y)$
 $T = B_m \bar{A}_o \bar{A}_c A^{+}$
 $\Rightarrow u = \frac{B_m A}{A_m B} f + \frac{A^{+} \bar{S}}{B^{+} \bar{R}} (y_m - y)$
 $Feedforward:$
 $G_{ff} = \frac{B_m A}{A_m B} = \frac{\bar{B}_m A}{A_m B^{+}}$
 $= \frac{\bar{B}_m A}{A_m B^{+}}$
 $Feedback from e = (y_m - y):$
 $G_{fb} = \frac{A^{+} \bar{S}}{B^{+} \bar{R}}$



Realistic Design Problem

• Example 5.5 (motor with zero cancellation): $G(z) = \frac{K(z-b)}{(z-1)(z-a)} \qquad A = A^{+} A^{-}$ $B = B^{+} B^{-}$ $B_{m} = \bar{B}_{m} B^{-}$ $R = A_{m} B^{+} \bar{R}$ $S = A_{m} A^{+} \bar{S}$ $T = B_{m} \bar{A}_{o} \bar{A}_{c} A^{+}$ • Cancel the zero z = b: $B^{+} = z - b$ $B^{-} = K \qquad \bar{B}_{m} = B_{m}/K$ $A^{+} = 1 \qquad A_{o} = 1 \qquad \bar{A}_{c} = A_{m}$

Feng-Li Lian © 2019 **Realistic Design Problem** DCS32-InOutDesign-28 Example 5.5 (motor with zero cancellation): $A = A^+ A^-$ Control Law: $B = \mathbf{B}^+ B^ B_m = \bar{B}_m B^ R = A_m B^+ \bar{R}$ $A_{cl} = AR + BS$ $S = A_m A^+ \bar{S}$ $T = \bar{B}_m \bar{A}_o \bar{A}_c A^+$ $\Rightarrow A_m = A\bar{R} + B^-\bar{S}$ Try $\bar{R} = r_0, \bar{S} = s_0 z + s_1$ $\Rightarrow r_0 = 0$ $s_0 = \frac{1+a+p_1}{K}$ $s_1 = -\frac{p_2-a}{K}$ And $T(z) = A_o(z)\overline{B}_m$ $\Rightarrow \frac{z(1+p_1+p_2)}{K} = t_0 z$



Realistic Design Problem

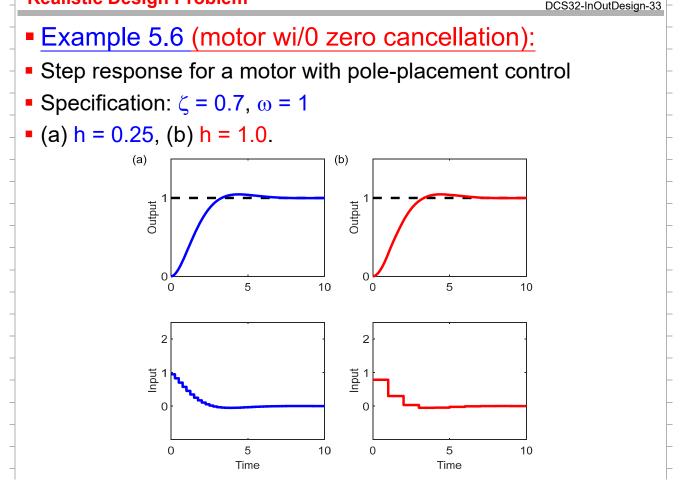
Feng-Li Lian © 2019 DCS32-InOutDesign-31

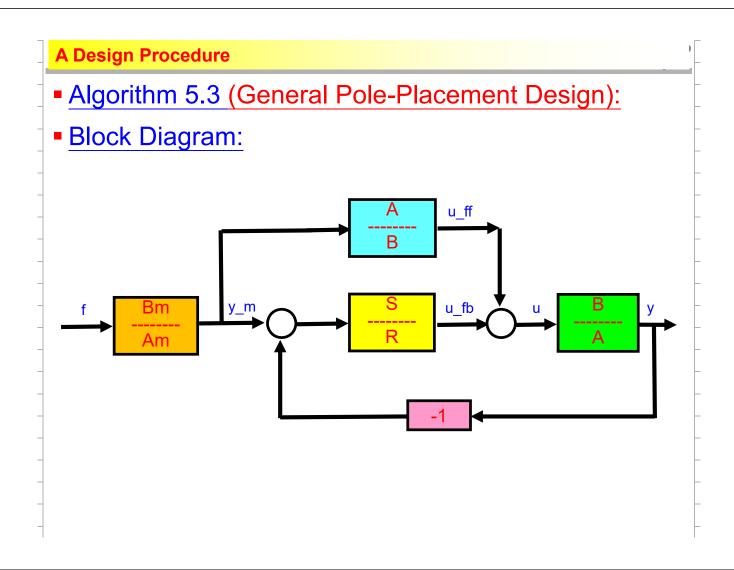
Example 5.6 (motor w/o zero cancellation):

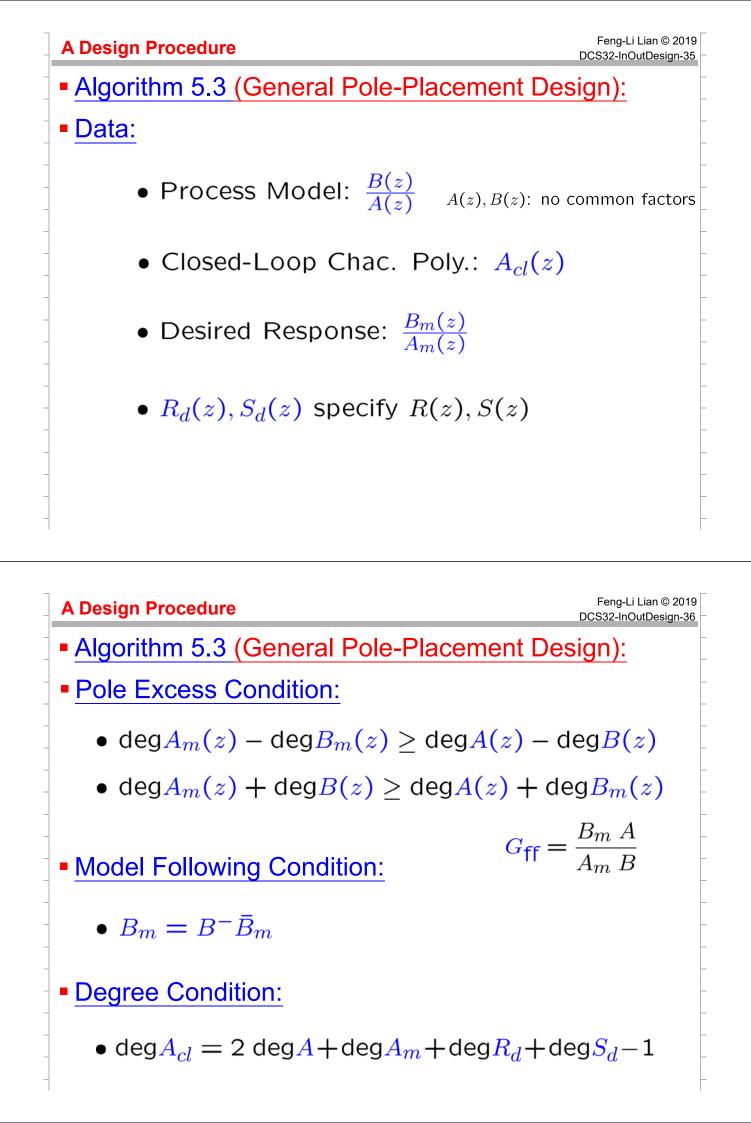
$$G(z) = \frac{K(z-b)}{(z-1)(z-a)}$$
$$G_m(z) = \frac{(1+p_1+p_2)}{(1-b)} \frac{(z-b)}{(z^2+p_1z+p_2)}$$
$$B^+ = 1$$

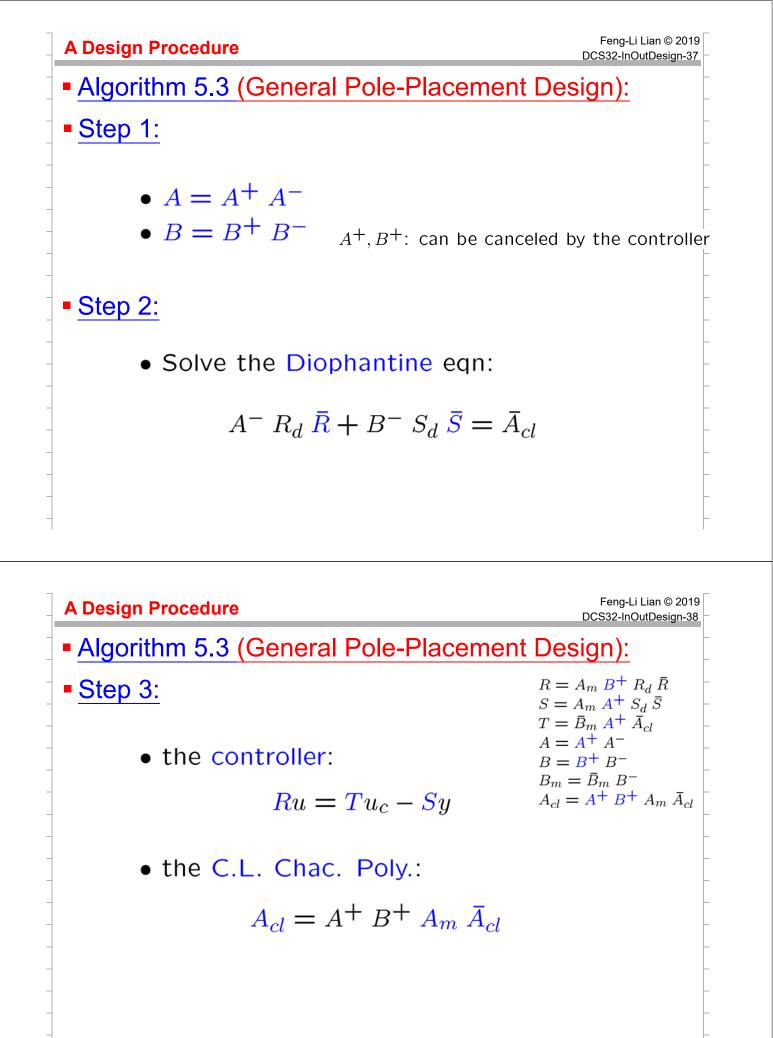
$$egin{aligned} & E & E \ & B^- = K(z-b) \ & A^+ = 1 \ & A_c = A_m \ & A_o = z \ & ar{B}_m = rac{1+p_1+p_2}{K(1-b)} \end{aligned}$$

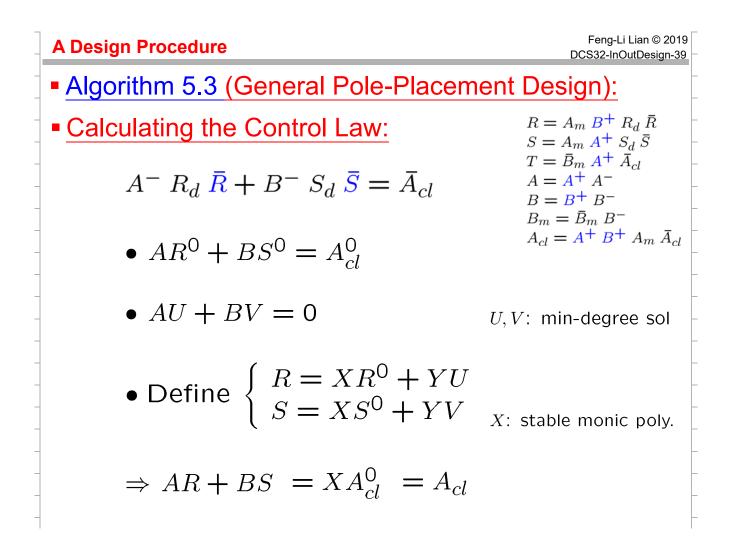
Realistic Design ProblemFeng-Li Lian © 2019
DCS32-InOutDesign-32• Example 5.6 (motor w/o zero cancellation):• Control Law: $AR + B^-S = A_mA_o$
 $\deg S = 1, \deg R = 1$ Try $R = z + r_1, S = s_0z + s_1$
 $u(k) = t_0u_c(k) - s_0y(k) - s_1y(k-1) - r_1u(k-1)$









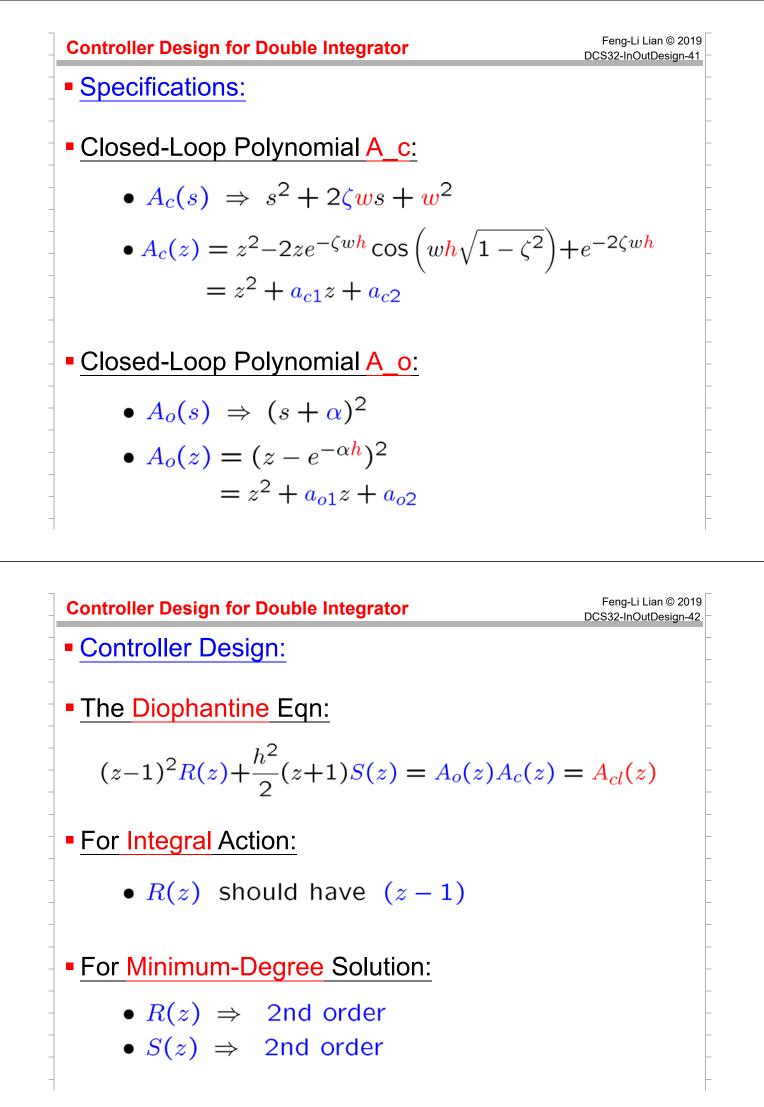


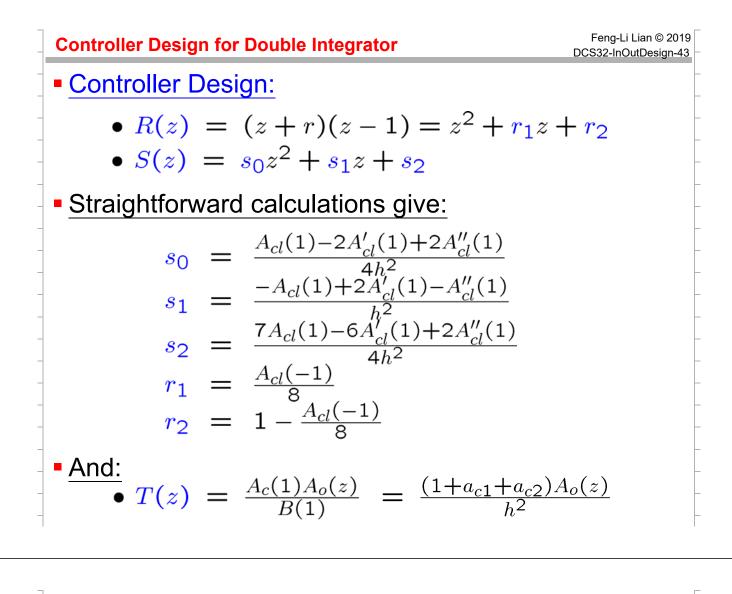
Controller Design for Double Integrator

Process Model:

•
$$G(s) = \frac{K}{s^2}$$
 $K = 1$

•
$$G(z) = \frac{h^2}{2} \frac{z+1}{(z-1)^2}$$





Controller Design for Double Integrator

Feng-Li Lian © 2019 DCS32-InOutDesign-44

- Nominal Design:
- Closed-Loop Parameters:

$$\zeta = 0.707$$
$$w = 0.2$$
$$\alpha = 2$$
$$h = 1$$

 $e^{-\alpha h} = 0.135$

