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Introduction: Model and Analysis and Design

ikl e[K] ufk] y[K]

= Plant (DT):

* Input-Output Model:

— — B(..(z)
G~ €a®) = 2.

+ State-Space Model:
x[k + 1] = Fx[k] + Hulk]
ylk] = Cxl[k] 4+ Dulk]

C(z)

= System Properties:
» Stability
» Controllability and Reachability
» Observability and Detectability
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y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

= |nternal model

* Matrix calculations

= External model

* Polynomial calculations

(z41)
z(z-0.5)

Discrete Zero-Pole
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= Process and Controller Models

— By Rational Transfer functions
= Poles and Zeros
= Command Signals
= Disturbance Response
= Case Study:

— Double Integrator
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= Control System Design:
» Command signal following (reference)
» Load disturbance (actuator)
» Measurement noise (sensor)
» Process disturbance (un-modeled dynamics)

= Design Parameters:
» Closed-loop characteristic polynomial
» Sampling period
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= Block Diagram of a Typical Control System:

' R(z) u
— | =T(2)f-S(2) y

(z4+05)(z—1)u (z+1)
(22 -0.22z+1)

=(24+03)f —(2°-0224+1)y

Simple Design Problem

= The Process Model: 79 —$—-—J>——»

A(2)y(k) = B(z)u(k)

or, y(k) = B(Z)u(k)

e A(z) =2"+a12" 14+ an
e B(z) = b1z L4 4 by

e deg A(q) > deg B(q)

e A(g),B(q): no common factors
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= The Controller Model: N _J>_._<!>...

R(=)u(k) = T(2)f (k) — S(2)y(k)

Or, u(k) = 1 (k) — (k)

* Gfr(z) = % o Grp(z) = %

e If causal = deg R(z) > deg S(z)
BT
y(k) = e )

= How to find T'(z),R(z2),5(z) ?
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= Closed-Loop Characteristic Polynomial:

= y(k) = o ()
Ac(z) = A(z)R(2) + B(2)S(2)
e G(z) = ﬁg%

* Gp(2) = (3

= Diophantine equation

= Pole-placement design:

» Find R(z) & S(z2),

such that Diophantine equation is satisfied!
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= Closed-Loop Characteristic Polynomial:

Aq(z) = A(2)R(2) + B(2)S(2)
= Ac(z) Ao(z)
= A.(z) =det(z] — F + HK)
controller polynomial

= Ay(z) =det(zI — F + LC)
observer polynomial

e If controllable = any eig — A.(2)
e If Observable = any eig — A,(z2)
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= Determining T(z) in G_ff(z): g _<L_-_J,_*

B(z)T(z) h
Aq(2) F(z)

_ BGTE)
Ac(z)Ao(2)
o Let T'(2) = toAn(2)
toB(2)
Aoy L&)

e i, IS for desired static gain

Y(z) =

= Y(z) =
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= Algorithm 5.1: (Simple Pole-Placement Design)

e Data: %% and A, (2)

e A(2),B(z) do not have common factors

e A, (z) has desired specification
e Step 1: Find R(2),S5(%2)
e deg(5(z)) < deg(fi(2))
Satisfy
A(z)R(z) + B(2)5(2) = Au(z)
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= Algorithm 5.1: (Simple Pole-Placement Design)

o Step 2: Write A, (z) = Ac(2)An(2)
e deg(Ay(z)) < deg(R(z))

Select T'(z) = toAo(2)

e Controller Law:

R(z)u(k) =T(2)f(k) — 5(2)y(k)

e Response to command signals:
Ac(2)y(k) = toB(2) f(k)
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= Example 5.1: (Control of a double integrator)

1 . h2(241)
52 2(z—1)2

= A(2) = (2 —1)2
B(z) = (s +1)

e Diophantine equation

2
" 1)8(2)

Aa(2) = (2 = 1)?R() +
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= Example 5.1: (Control of a double integrator)

e Try R(z) =1,5(2) = sg

= This is P controller, b/c Gg, = %
2
= A(z) =(%2-224+1)+ 302h (z+1)

= Impossible for any A_(z) of 2nd order
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= Example 5.1: (Control of a double integrator)

o Try R(z) =z+41r1,5(2) = spz+ s1
= T his is 1st-order controller,

= Ag(2) = (2=2241) (= + 1)+ (2+1) (502 + 51)

P

h2
= 25+ (fr'l + ?50 — 2) 2°

/ \

;D ;D
—l—(1—2r1+%(30—|—51))z—|—'r1—|—31%

= 11,580,571 for any A, (z) of 3rd order
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= Example 5.1: (Control of a double integrator)

o Try R(z) =z+41r1,5(2) = spz + s1

= If Ay(2) = 23+ p12° + poz + p3

2
= ri4+%s0 = p1+2
2
—2?“1+h7(80+812 = pr—1
?“1+81h’2 = p3

I b L o 2

yl
543p1+po—p3
2h2
S _ 34p1—p>—3p3
1 2h2

S0
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= Example 5.1: (Control of a double integrator)

o T(2) = tgAo(2)
b/C: Ag(2) = Ac(2)Ao(2)

= Ac(z) of 2nd order

Ao(z) of 1st order

And, let to = %

Realistic Design Problem

= Cancellation of Poles and Zeros:=—| . _$_-_J>__,

— e
A = A+ A~ (z—01)(z+05)(2+2) = (¢-0.1)(2+0.5)(z+2)
B = B+ B~ (2 -0.2)(z—3) = (z-02)(z—3)

e AT BT are nice polynomials

I.e., their roots are inside the unit disc
i.e., they can be canceled

_ _ BT
R—pthH AR + BS
— (BTB)(ATT)
= S=At 5: 7 (AFAY(BTR) + (BTB-)(AT5)
T =ATT BT

= — =
AR+ B—S
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= Closed-Loop Characteristic Polynomial: 4 =4" A~
B=BTtB
— R=BTR
T=ATT

= (ATAT)(BTR) + (BTB)(ATS)
= ATBT (A"R+ B™5)
= ATBT(A,)

ob/c: Ay = Ac A, = (BTA)(ATA)

= A_R + B_g — ECZ == Ecﬁo
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= Minimum-Degree Causal Controller:

— A_R + B_g — ECZ — ECAO
e It is unique, if deg(S) < deg(A™)

= Control Law; A=At A~
B =Bt B~
_ R=BTR
Ru=1Tf— Sy o+
T=AtT

= BTRu= ATTf— AT3y

_ AT §
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= Transfer Functions el o _J>_-_<!)__,

from command to output:

BT —
k) = k
y(k) = o (8)
A:AiA—_
_ BT _ (BTB7)(toAo) "ot
Acl AcAo ?Zf{+}
- to B B i(:::tEJJBI—ZIl_OILTLc
- }—1 A, = AT A4,
C

e If unstable modes are canceled,
they are uncontrollable or unobservable
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= Disturbance & Command Signal Response:

A= AT A~

B =Bt B~ e AT BT are canceled nice polynomials

» Desired response to command signals:

= For perfect model following:

— T 1 v #
Bm BmB — R(z)u » * ¥
pep- | = T(2) f-S(z) ¥
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= Let: A
_ = Bt B—
R = Am B_l_ fg gm ZBB'N;,BB n

T = Bm Ay, Ac AT

= Control Law:
R(2)u(k) = T(2)f (k) — S(=)y(k)
= u(k) = FE p(k) — 28y (k)

R(z) R(z)
= u(k) = A7 (Buledey _ 5y)
—_—p Rz)u _l{k_.s_(!;_!_'
— | = T(2)f-S(2)y
— e
Realistic Design Problem DCSIOuDesn 24
. . . ) A=At A-
= From the Diophantine equation: B— gt B
Bf,rn = Bm B_
A A — D — O = A, BT R
Ao Ac=A"R+B~ S5 s

T = B’m Izlo f_l(: A+
= Hence:

Bm 1T A _ Bm(A_ R—I—B_ g)
= A (Aode) = Am R

R
= k) = 5 ((Rad= + Rut) 1 )
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] A= AT A~
= Control Law: B Bt B
P A A PR — ,T,\ = AN B f— B B—
_ AT By A Bm *2 o Q m m 3
= u(k) T B ((Am B~ + A-m, R) f Ry) R= Am B+ F’
S=Amn AT S
B-m, f N f . A«m, T = B-m, fqo Ac A+
yﬂl o A?n o Bm m
Bm A At S
= U= f+ (ym — vy)

Ay, B BT R

= Feedforward:

B;rn A _ Bm A

Am B Apm BT

G =

= Feedback frome=(y m—-y):

AT S
Ctb = 5+ &

. s . Feng-Li Lian © 2019
Realistic Design Problem DCS32-InOutDesign-26

= Control Law:
By, A AT S

= U= — —_
u_ff
4’ B
f Bm y_m C ____S____ u_fb : u B y
_ B 1
Yy — U
= . Bfm
_ B, = Y = Ym = y=- f
A m
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= Example 5.5 (motor with zero cancellation):

— A+ A—
G(z) = K== 0) Bt B
(Z — 1)(2 — CL) Bm ZB?TLBE__
G () = 21+ p2) S=AmATS
m (z2+plz+p2) T = Bm Ao Ac A

= Cancel the zero z = b:

B =2z—-b
B~ =K Bm — Bm/K
AT =1 Ao:1 Ac:Am
o . Feng-Li Lian © 2019
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= Example 5.5 (motor with zero cancellation):

A= AT A-
= Control Law: B=Bt B~
By, = By B~
— = A, Bt R

= y = _'m, _o _(’ +
= Am = AR+ B~5 f= e ded

Try R=1r9,5 = sgz + 51

= r190=20
_ l+a+
so = Lt
—a
sy = —B2-

And T(z) = Ao(2)Bm
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= Example 5.5 (motor with zero cancellation):

A=At A~
= Control Law: B=pBt B~
By = Bm B~
R= Am BT R
N ’U,(k;') —_ A"‘ (BonAcf ) S=An AT S
B T = B’m Izlo /_1(: A+

= u(k) = tof(k)—soy(k)—s1y(k—1)+bu(k—1)
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= Example 5.5 (motor with zero cancellation):

= Step response for a motor with pole-placement control
= Specification: £ =0.7, ® = 1

= (@) h=10.25, (b) h=1.0.

@) (b)
> =
g g
> >
o o
0 0
0 5 10 0 5 10
2 2
51 51
Q. Q.
£ £
0 0
0 5 10 0 5 10

Time Time
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= Example 5.6 (motor w/o zero cancellation):

K(z—b)
(2 —1)(z —a)

(1+p1+p2) (z —b)

G(z) =

Gm(z) =
" (1-b) (22 +p1z+p2)

BT =1

B~ = K(z—b)

AT =1

Ac — Am

A, =z

n _ 1+pi+po

B, = K(ll—b)

Realistic Design Problem DCSFEQ(‘].’”%;'SZS;O;?

= Example 5.6 (motor w/o zero cancellation):

= Control Law:

AR + B-S = A, A,
degS =1,degR =1

Try R=2z2z+411,5 =5s0z+ 51

uw(k) = touc(k) —soy(k) —s1y(k—1) —riu(k—1)
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= Example 5.6 (motor wi/O zero cancellation):

= Step response for a motor with pole-placement control
= Specification: £ =0.7, ® = 1

= (@) h=10.25, (b) h=1.0.

(a) (b)
- - - -
> >
Q. Q.
5 5
(@] (@]
0 0
0 5 10 0 5 10
2 2
51 51
Q. Q.
B H\ - —L\_
0 0
0 5 10 0 5 10
Time Time

A Design Procedure ] '

= Algorithm 5.3 (General Pole-Placement Design):
= Block Diagram:

u_ff

wy] |
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= Algorithm 5.3 (General Pole-Placement Design):

= Data:

B(z)

e Process Model: A(z)  A(2),B(2): no common factors

e Closed-Loop Chac. Poly.: A, (z)

B (2)
Am(z)

e Desired Response:

e Ry(z2),S, (z) specify R(z),S(z)
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= Algorithm 5.3 (General Pole-Placement Design):

= Pole Excess Condition:

e degA,.(z) —degBn,(z) > degA(z) — degB(z)
o degAm(2) + degB(z) > degA(z) + degBm(z)
Bm A

. o Ger=—7_ 5
= Model Following Condition: Am B

= Degree Condition:

e degA, = 2 degA+degA;,+degR,;+degS,;—1
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= Algorithm 5.3 (General Pole-Placement Design):
= Step 1:

e A= AT A~
e B=DBT B~ AT BT: can be canceled by the controller
= Step 2:

e Solve the Diophantine egn:

ATR;R+ B~ S;S=A,
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= Algorithm 5.3 (General Pole-Placement Design):

- Step 3: R=An BY Ry R

S = A';n A+ Sd g
T = B'yn A+ A_C£

A= AT A-
e the controller: B = Bt B~
Bm — Bm B~
Ru pu— T'U,c - Sy Ay = At pt Am Ad

e the C.L. Chac. Poly.:
A,=AT BT A, A
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= Algorithm 5.3 (General Pole-Placement Design):

- . R=An BT Ry R
= Calculating the Control Law: B BT T

— _ _ T = Bm A+ /Id_
ATR; R+B~ S; S=A A=At A-
d L+ d cl AT
Bm = Bm B~
A(.‘I = A+ B+ Am E(:l

e ARV + BSY = AY
o AU + BV =0 U,V: min-degree sol

R=XR4+YU

e Define { S = XSO+ YV

X: stable monic poly.

= AR+ BS = XAY = A4,

Controller Design for Double Integrator ] ’

= Process Model:

¢ G(s) = & K=1

e G(z) = h2 241




Controller Design for Double Integrator

= Specifications:

= Closed-Loop Polynomial A c:

o Ac(s) = s24 2¢Cws + w?

o Ac(2) = 22—2ze Wl cos ('wh\/ 1— CQ) +

= Z2 —|— Ac1 % —|— aco

* Closed-Loop Polynomial A o:

o Ao(s) = (s+ a)?
o Ao(2) = (2 — e~ )2

= 22 + a,1z + ayo

Feng-Li Lian © 2019
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e—Qth.

Controller Design for Double Integrator

= Controller Design:

= The Diophantine Eqgn:

L2
(= 12R()+2 (H1S() = Ao(2)Aclz) =

= For Integral Action:

e R(z) should have (z—-1)

= For Minimum-Degree Solution:

e R(z) = 2nd order
e S(z) = 2nd order

Feng-Li Lian © 2019
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Acl(z)
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= Controller Design:
e R(z2) = (z4+7r)(z—1)=224+r1z+7r>
o S(2) = spz2 4 5124+ so
= Straightforward calculations give:
Aq(1)—2A7,(1)+2A7(1)

S —

4h2
_ —Aq(1)42A7 (1)—A" (1)
1 — ;}2
_ 7Aa()=64"(1)+247,(1)
$2 = 412
r — Acl(_l)
1 8
ro = 1_Acl(8_l)
= And:
[ T(Z) = Ac(é)(‘f‘;(z) — (l+acl'|;L%c2)Ao(Z)
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= Nominal Design:

= Closed-Loop Parameters:

¢ = 0.707
w 0.2
« 2
h = 1




Controller Design for Double Integrator

= Simulation Study:

Command Signal: Unit Step
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Load Disturbance: Step of -0.05 at time 50

Measurement Noise: 0.01sin2t at time 100

* Frequency Folding:

Nyquist Frequency: 0.5 Hz = 7w rad/s

Measurement Noise: 2 rad/s

Controller Design for Double Integrator

= Simulation Study:

¢=0.707; w=0.2; a=2; h=1; Load Dist. at 50, Meas. Noise at 100

T — = R
5
[oN
=
@)
0 I 1
0 50 100 150
01r i
S M
Q.
£
Od i
0 50 100 150

Time
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0.707
0.2

2

1

=Q g8
[

Disturb at 50
Noise at 100




Controller Design for Double Integrator Feng-Li Lian © 2019

DCS32-InOutDesign-47
= Changing Natural Frequency m:
"(a)w=0.2,01,04;[=0.707,0=2; h=1]
= (b) control signal when » = 0.1
= (c) control signal when o = 0.4

@ w = 0.2(k), 0.1(b), 0.4(r); [¢=0.707; a=2; h=1]
1 s =
5 'I yd - -
% 'l / - -
e} I /
U4
0 1
0 50 100 150
(b) :
01r
H
£
0 =
0 50 100 150
(c) '
0.1
5
Q. Cpugeses=
£
° k/—}\

100 150

o
(&)
o

Time
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= Changing Damping Ratio C:

= (@) =0.707,05,1.0; [0=02,0a=2,h=1]

= (b) control signal when £ = 0.5

= (c) control signal when = 1.0
@ ¢=0.707(k), 0.5(b), 1(r); [W = 0.2; a=2; h=1]

1 = ——
/e \/-
(4

Output

0 50 100 150

Input

0 50 100 150
(c)
0.1
5
e
o[\ l
0 50 100 150

Time
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= Changing Observer Poles a; z =e~ "
"(@)a=2,0510;[£=0.707; ®=0.2, h=1]

= (b) control signal when a = 0.5

= (c) control signal when a = 10

@ a=2(k), 0.5(b), 10(r); [¢=0.707, w = 0.2; h=1]
1
E W
5 \ /
O -~
0 1 1
0 50 100 150
(b)
0.1 b
2 f\.——-ﬂam-rm
£
o ,
0 50 100 150
©
01r b
0 I l
0 50 100 150
Time
Controller Design for Double Integrator FengLi Lian © 2019

DCS32-InOutDesign-50
= Changing Sampling Period h; z = ™"
"(a)h=1,2,0.1;[£=0.707; 0 =0.2; a = 2]
= (b) control signal when h = 2
= (c) control signal when h = 0.1

@ h=1(k), 2(b), 0.1(r); [¢=0.707, w = 0.2; a=2]
1 SE S =
5 ==
£ 1%
(@)
0 1 1
0 50 100 150
(b)
0.1 1
3 M
<
0 L -
0 50 100 150
(c)
01 B
g — IV
<
N\ _
0 50 100 150

Time




