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Introduction: Model and Analysis
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= Plant (CT): = Plant (DT):
* Input-Output Model: * Input-Output Model:
Ye(s) _ Be(s Yi(z) _ — B(__(Z
vty = Gel®) = 33 TGS = Ga() = 1453
» State-Space Model: » State-Space Model:
x(t) = Ax(t) + Bu(t) x[k 4+ 1] = |Fk[k] +|Hk[k]
y(t) = Cx(t) + Du(t) ylk] = |Cx[k] HDulk]

= System Properties:
» Stability
» Controllability and Reachability
» Observability and Detectability
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= Controllability & Reachability
= Observability & Detectability

= Kalman’s Decomposition

Feng-Li Lian © 2019

Introduction DCS23-CtRhObDt-4

= Controllability & Reachability

* Whether it is possible to steer a system

from a given initial state to another state?

z(ko) z(k)

» Observability & Detectability

* How to determine the state of a dynamic system
from the observations of inputs and outputs
ulk] ylk]
— () [
x[K]
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= Some Examples

zi(k+1)] [ 2 0] z1(k) 1
o EM = HEC

{xl(k+1> = 2x1(k) + u(k)
o(k+1) = 3zo(k) + u(k)
z1(k+1)] _[2 0] z1(k) 1
[wg(k—l—l)] - [0 3] [x;(k)]"'{o}“(k)
{:cl(k+1) = 2x1(k) + u(k)
ro(k+1) = 3xo(k)
zi(k+1)] [ 2 0] z1(k) 1
[xg(k—l—l)] _[1 3] [m;(k)]_l_{O]u(k)
{wl(k+1> = 2x1(k) + u(k)
ro(k+1) = 3za(k) +z1(k)
Controllability & Reachability DCS23 CRNOVDLS

= Definition 3.7: Controllability
» The system is controllable
> ifitis possible to find a control sequence

» such that the origin can be reached

» from any initial state in finite time.

= Definition 3.8: Reachability
» The system is reachable
> ifitis possible to find a control sequence

» such that an arbitrary state can be reached

» from any initial state in finite time.
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= Consider the system:
J x(k+1) = Fx(k)+ Hu(k) <€ R"

1 y(k) = Cx(k) Initial state: xg = x(0)

= The state at time n
x(n) = F"%x(0)+F*" 1Hu(0)+---+Hu(n—1)

u(n — 1)
- n n—1 u(n - 2)
= F"x(0)+| H FH ... F" 'H | :
= x§ + WcU u(0)
= x(n) — x5 = WU
= U = W x(n) — x}] IF rank( We ) = n
= That is, exit some control signals, such that:
Initial state: xg = x(0) — x(n)
Controllability & Reachability b cRtonie

= Theorem 3.7: Reachability
» The system is reachable

» if and only the matrix Wc has rank n.

Controllability Matrix

= |F the system matrix F is invertible:
» Reachability = Controllability

= Controllability does not imply Reachability!!!
= [F F*n x(0) = 0, then the origin will be reached with 0 input

= But the system is not necessarily Reachable




Controllability & Reachability pCsrs oRnoDro

= Example 3.7: A controllable system which is not reachable

x(b+1) = | 9 8]x<k>+ é]uuc)
We = |H FH - F'lH |
we= o] [15]]s]] =1lo] [7]]

) = |t is reachable
x(e+1)= | § 0 xw+ | luw

ve= [P 1Re]15)) = 1) s

= |t is not reachable

»BUT, F2 = 09 —x(2)=0 =ltiscontrollable

. Feng-Li Lian © 2019
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= Assume that F has the characteristic polynomial:
det \WI=F) = N4\ 14+ +ay,
= Assume that Wc is nonsingular.

= Then, the system can be described by the following

Controllable Canonical From:

—a1 —ap -+ —Qp_1 —an 1 ]
1 0 0 0 0
z(k+1) = 0 1 0 0 z(k) + | O | u(k)
0 0 1 0 0

y(k) = | by -+ bn |2z(k)




Controllable Canonical Form

= The advantage of using the Controllable Canonical From:
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az - fp—1 an 1

= |F the input is: wrn=[o 77 0 o [+ [0
er 0o 0 1 0 o
L #n
[ —a1 —ao —Qpn—1 an,
1 0 0 0
z2(k+1) =| 0 1 0 0 |z(k)
0 0 1 0
- 1 - )
-—;171 —ky -+ —k,_1 —kn 0 Zl
o 0 - 0 0 — 10 k1 ko kn] 2
0 o .- 0 0 z(k) : :
L i 0 L 2n |
0 o .- 0 0 | Y]

Controllable Canonical Form

Feng-Li Lian © 2019
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z(k+1) =
[ —(a1+ k1) —(a2+k2) - —(an-1+kn1) —(an+kn) |

1 0 : 0 0

0 1 0 0 z(k)
0 0 1 o
= The characteristic polynomial of the controlled system is:

det (M — (F — HK))
= AN+ (ap +EDNTE 4o+ (an + Fn)

z(k+1) Fz(k) + Hu(k) Fz(k) — HKz(k)

(F — HK) z(k)

w(k) —Kz(k)
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= Example:

x(hk1) = | 2 e + | §

y(k) = | by b | x(k)
= The pulse-transfer operator is:

_ B
A(q)

o] (=[5 7)) [
=[] F 2] ]S

= ! by b || %2 !
P4ag+ay 1 2|1 g4a||0

G(q) =C(¢gI-F)"'H+D

Feng-Li Lian © 2019
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= Example:

x(ht1) = | 2 e + | §

y(k) = | by b | x(k)

= The pulse-transfer operator is:

B
G@)=C@l-PHH+D =17
b1g + b2 . b]_q_l —+ bzq_Q

?+aig+ax  14+a1g 4+ axg 2
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= Controllability & Reachability

* Whether it is possible to steer a system

from a given initial state to another state?

z(ko) z(k)

» Observability & Detectability

* How to determine the state of a dynamic system

from the observations of inputs and outputs

u[k] y[K]

x[K]

e Feng-Li Lian © 2019
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= Definition 3.9: Un-observable States [x(k+1) = Fx(k)+ Hu(k)

y(k) = Cx(k)

xg 7# 0 is un-observable x € R"
if 3 a finite ki >n—-1 Initial state: xo = x(0)
such that

when z(0) = 2o & u(k) =0, for 0 <k < kq
then y(k) =0, for 0 < k < kq

= Definition: Observable ulk] ylk]

A system is observable
if 4 a finite k
such that

the knowledge of {

x[K]

w(0),...,u(k —1)

ic
19

initial state of the system

®

.|_
determine th
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Let w(k) =0 ((x(k+1) = Fx(k)+ Hu(k)
and y(0),y(1),....,y(k — 1) are given: i y(k) = Cx(k)
x € R"
y(0) = Cx(0) Initial state: xg = x(0)
y(1) = Cx(1) = C(Fx(0))
y(n — 1) = Cx(n — ]_) — ... = C F’n,—lx(o)
y(0) Cx(0) C
y(:l) _ CFX(O): _ Cl::‘ «(0)
y(n —1) CF”_]-X(O) CFn—1
Y= W, x(0)
IF rank( Wo ) = n =~ x(0) = Wo 1Y
Observability & Detectability Feng-Li Lian © 2019
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= Theorem 3.8: Observability

The system is observable <= rank(Wg) =n

= Definition 3.10: Detectability

A system is detectable

iIf the only un-observable states are

such that they decay to the origin,

i.e., the corresponding eigenvalues are stable.




Observability

= Example 3.10: A system with unobservable states
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1.1
1

x(k+1) = [
* The observability matrix is:

C
CF

- |

Wo

1

—0.3
> | xw

y(k) = [ 1 —-0.5 ] x(k)

(1 —0.5][

~0.5
| 0.6 0.3

= The unobservable states belong to the null space of Wo:

[ 1 —0.5]
1.1
1

—0.3
0

|

= rank(Wy) =1

|

|

0.5

that is, [ 1

Observability

= Example 3.10: A system with unobservable states

Feng-Li Lian © 2019
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I.C.=[1.50.5]"

10

I.C.=[1-0.5]"

I.C.=[0.51]"
(a) (b)
2 2
4 2 e
31 ' o
0 10 0
- T
o I.C. =[2.50]
(c) (d)
2 2
- [ ] -—
= 2 e
31 e 31 o
L °
0 ®e 0.0.0 ’ o) —
0 10 0

10
Time
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= Observable Canonical Form

F: detOAM[—F) =\"4a A" 14+...4a,=0
Wy nonsingular

T: x—> 1z ie,z=Tx

= The transformed system is:

.|
1
.|

—an 1 0 --- O bl
—ar 0 1 0 by
z(k+1) = P 0 | z(k)+ : w(k)
—an_1 1 bn—1
y(k) =[1 0 --- 0]z(k)
Observable Canonical Form I eoetis
= Observable Canonical Form
= Easy to find the observer gain:
x(k+1) = Fx(k) + Hu(k) y(k) = Cx(k)

xo(k+ 1) = Fxo(k) + Hu(k) + uo(k)
uo(k) = 4+ Lly(k) — C x0(k)]
xo(k+ 1) = Fxo(k) + Hu(k) + Ly(k)—C x,(k)]
x(k+1) —xo(k+1) = F[x(k) — xo(k)]

_LIC x(k) — C x0(k)]
xe(k) = x(k) — xo(k) — L C[ x(k) — x0(k) ]

Xe(k+1) = Fxe(k) — L Cxe(k)
= [F — LC]xe(k)




Observable Canonical Form

= Observable Canonical Form

= Easy to find the observer gain:

Xe(k+1) = [F — LC]xe(k)

Feng-Li Lian © 2019
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Iy l1 0 0
LC = l:? [10-.-0]= l:?o 0
I ln, O - 0
[ —aq 1 O 0 ]
—a» 0 1 0
F fr— H H . 0
—Qp_1 1
i —an, O 0 i
F - LC
Observable Canonical Form DZ‘;Z%%&L?%?&?E
Xe(k+1) = [F — L C]xe(k)
14 I, 0 0
LC = Z:Q [10.-.-0]= Z:QO N 0
| 1n l, O --- 0O
[ —aq ]. O 0 ]
—a» 0 1 0
F = P 0
—Qpn—1 1
i —an O O i
_ —(a1+11) 1 0 0 |
—(ap+12) 0 1 0
F —_— LC = : : O
—(ap-1+1l-1) ¢ 1
i —(an + lfn,) 0 0 |

det()\f — (F — L C)) - A"+ ((11 -+ 51)/\?1—1 + -+ (OLn + !En) =0




Observability

= Example 3.11:
x(k+ 1)

(in observable canonical form)
—a1 1

S B ECEA FIRC

1
2
y(k) = [ 1 O]X(k)

= The pulse-transfer operator is:

_ Bla)

— )1 _
G(q) =C(I-F)""H+D ()

= [oj(a-[zad]) [2]
= [1o][r*a ][]

1 q 1
1 0
g2+ a1q+ as { ][CEQ q+ a1

Feng-Li Lian © 2019
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Observability

= Example 3.11:

x(k+1) = [_al 1

Tl ] x(k) + [ L ] u(k)

y(k) = [ 1 O]X(k)

= The pulse-transfer operator is:

B B(q)
G(@q)=C@@-F)"'H+D =-—"—%
(q) (g ) e
_ b1g + b2 _ b1g L+ brg~?
7° +a1q+ ap 14+ a1g~1 4+ apg=2

The controllable canonical form:
—ao 1
2 [xw) + [ § | ue

y(k) = | by by | x(k)

x(k+1) = [ ]

Feng-Li Lian © 2019
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= Kalman showed that:

[Fll Fio O 0 -’ Hq
o 1 . O Frr O 0 ke 0 o
x(k+1) = ‘F31 Fzp F33 F34 x(k) + H3 u(k)
N iR N I 0
L U 142 U 44 |

y(k) = [C1 C2 0 0] x(k)

where x(k) =

QIO
mu/Ravies ey

and, G(q) C(ql —F)1H

= C1(q¢l — F11)"1Hy

Feng-Li Lian © 2019
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i N Ya(2) _ _ By(2)
ol A @ 7 T = %) = 36
| |
| Sﬁr SOF ]
| |
| o | x[k+ 1] = Fx[k] + Hulk]
| | y[k] = Cx[k] + Dulk]
| D e, B W heehd N
O]jt unstable — stable
x(k) = | f
OR design ulk] = stable — more stable
OR

from y[k] to estimate x[k]




Loss of Reachability & Observability through Sampling e

= Loss of Reachability:

sampling
C.T. system —) D.T. system

»If D.T. system is reachable, then C.T. system is reachable
»But, if C.T. system is reachable, D.T. system may not!

= |oss of Observability:

»Un-observability in C.T. system:
v'zero over a time interval

»Un-observability in D.T. system:
v'zero only at sampling instants

v"May oscillate between sampling instants
(hidden oscillation)

Loss of Reachability & Observability through Sampling e

= Example 3.12: The harmonic oscillator
= The CT model is:

e | 0 w 0
= o )
y=—10]x

= The DT model (using zero-order hold) is:

1 — cos(wh)

x(h41) = | Cos(wh) sin(wh) x(k)+[ Sin(wh)]u(k)

| —sin(wh) cos(wh)

y(k) = :1 O]x(k)




Loss of Reachability & Observability through Sampling e

= Example 3.12: The harmonic oscillator
= The CT model is:

dr 0 w 0
i = ol o]
y=-1 O]x

= The controllability matrix is:

we=feae] = [[2] [0 5][2]]= 2 5]
= The observability matrix is: = det( W¢) = —w3
1 0
c _ | C _ [ } 110
Wi = [ ca BN =lo 2

= det( WS ) = w

Loss of Reachability & Observability through Sampling e

= Example 3.12: The harmonic oscillator
= The DT model (using zero-order hold) is:

cos(wh) sin(wh)

B 1 — cos(wh)
x(k+1) = | —sin(wh) cos(wh)

x(k) + [ sin(wh) ] u(k)

y(k) = 1 o]x(k)
= The controllability matrix is:

W¢ = |H FH |

[ 1-cwh cwh(1 — cwh) + (swh)?
swh —swh(1l — cwh) + (cwh)(swh)

[ 1-cwh cwh— (cwh)?+ (swh)?
swh  —swh 4+ 2(cwh)(swh)

det( Wd) = ... =  _2(sinwh)(1 — (coswh))
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= Example 3.12: The harmonic oscillator
= The DT model (using zero-order hold) is:

. cos(wh) sin(wh) 1 — cos(wh)
x(k+1) = | —sin(wh) cos(wh) x(k) + [ sin(wh) ] u(k)
y(k) = [ 1 0 |x(k)
= The observability matrix is:
c | (10
Wo = [ ] = cos(wh) sin(wh)
CF ] [ 10 } —sin(wh) cos(wh)

| 0
| cos(wh) sin(wh)

det( Wd ) = sinwh

Loss of Reachability & Observability through Sampling Feng-LiLian © 2019
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= Example 3.12: D.T. model of the harmonic oscillator

det( Wd ) = —2(sinwh)(1 — coswh)

= sinwh=0 = wh=0,n7
= 1—-—coswh=0 = coswh=1 = wh=2n~w

det( Wd ) = sinwh

= sinwh=0 =wh=0nr =w=7} =>’ws=2%

= wy =%

= SUMMARY YN =R
Models Controllability Observability

CT OK OK

DT Lost when wh = nrx Lost when wh = nx




