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Introduction: The Design Philosophy of Control Science

= The Research Procedure in Control Science

Feng-Li Lian © 2019
DCS22-Stability-2

Physical Math System Control
Process ‘ Model ‘ Analysis ‘ Design
= Estimator
= Plant = Differential egn = Root locus = |dentification
= Sensor = Laplace transform | = Bode diagram " Regulation
= Actuator = Transfer function | = Nyquist plot = Tracking
= Computer = State space form = PID
= Communication l = Stability = Pole placement
= Noise = Robustness = Optimal Control
« Disturbance |* Difference eqn |« Sensitivity LQR/'—.QG
= 7 transform - Controllability = Adaptive control
= Transfer function |« Observability = Robust cqntrol
= State space form " Decentralized
(or Multi-person)

Control




Introduction: From CT Plant to DT Plant

) et u(t) y(®)

—>?—> C(s) |==>{ G(s) T»
= Plant (CT):
* Input-Output Model:
u(t)
y(t)
— Y(s)
G(s) = 0(s)

» State-Space Model:

ylK]

ikl efk] ulk]
—>?—> C(z) || G(2)
= Plant (DT):
* Input-Output Model:
u(k]
ylk]
— Y(z)
G(z) = UO)

+ State-Space Model:

x(t) = Ax(t) + Bu(t) x[k + 1] = Fx[k] + Hulk]
y(t) = Cx(t) + Du(t) » ylkl = Cx[k] + Dulk]
Introduction: Model and Analysis , ’
rt) et u(t) y(t) ikl elk] ulk] ylk]
—?—* Cs) |—>|_Ss) T» —?—» C2) |— 6@ T»
= Plant (CT): = Plant (DT):
* Input-Output Model: * Input-Output Model:
Ye(s) __ Bc(s Y, (2) 1| By(2)
G = Gelo) = 543 Uy = Ga(2) 9 2529
» State-Space Model: » State-Space Model:
x(t) = Ax(t) + Bu(t) x[k 4+ 1] = |Fk[k] +[Hk[k]
y(t) = Cx(t) + Dut) ylk] = [C[k] +{Dlulk]

= System Properties:

» Stability

» Controllability and Reachability
» Observability and Detectability




Outline

= Solution of a System
= Stability and Asymptotic Stability
= Input-Output Stability
= Stability Tests:
* Jury’s Stability Criterion
* Nyquist and Bode Diagrams
* Nyquist Criterion
 Relative Stability
= Lyapunov’s Second Stability
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Solution of a System

=CT: d
@w(t) = f(xz(2),t)

e linear or nonlinear
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« DT e time-invariant or time-varying

z(k+1) = f(z(k), k)

= |nitial Condition:

z10 = z1(ko)

= Solution;

z1(k) = pi1(k,ko,x10)

zo (k)

zo0 = x2(ko)

po(k, kg, x20)
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= Definition 3.1: Stability

e z1(k) is stable

if for a given ¢ > 0

there exists a d(e, ko)

such that
all solutions with ||zo(kg) — z1(kg)l|| < 6

= |lzo(k) —z1(R)|| <€, VE>kg

aps Feng-Li Lian © 2019
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= Definition 3.2: Asymptotic Stability (k)
T

. . z2(k)
e x1(k) is asymptotic stable

if it is stable , and

if & can be chosen

such that ||332(]{?Q) — xl(ko)H <9

= |lzo(k) —z1(k)|| — 0, when k — oo




Stability of Linear DT Systems FGS?;SLIQZ'ZL@b.ﬁSS
= Stability of Linear Discrete-Time Systems

x1(k+1) = Fuxzi(k), 21(0) =aq

xo(k+1) = Fuay(k), x2(0) =as
= I=u1x1— 1o
= x1(k+ 1) —22(k+1) = Fzx1(k) — F zo(k)
~ #(k4+1) =F #(k), 5(0) = aq — as

= If zq1 is stable

= every other solution is also stable

= Hence, for LTI systems,

stability is a property of the system and
not of a special solution

HH . Feng-Li Lian © 2019
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= Solution of LTI DT Systems

(k+1) = F z(k), 7(0) = a1 —an
= (k) = FFz(0) i
A1 *
F=U U!
0 An
Let \;, = eig( F)
)\lf *
FF=U Ut
0 M\

Asymptotic stable = || <1, i=1,---,n
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Stability of Linear DT Systems
» Theorem 3.1: Asymptotic Stability of Linear Systems

e A DT LTI system is asymptotic stable

< all eig(F) are strictly inside the unit disc
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Stability of Linear DT Systems

= Stability of Linear Continuous-Time Systems

x(t) = Ax(t), x(fo) =x0

= x(t) = A1) x(44)

A1 *
Let \; = eig( A) =A=U . Uu!
O >\n
eAl(t_tO) %
= x(t) = U U1 x(¢g)
0 e)\n(t—to)

Asymptotic stable = Real()\;)) <0,i=1,---,n




Input-Output Stability Feng-Li Lian © 2019
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» Definition 3.3: Bounded-Input-Bounded-Output Stability

e A LTI system is defined as BIBO stable

if a bounded input gives a bounded output
for every initial value

= Theorem 3.2: Relation between Stability Concept

Asymptotic stable = stable and BIBO stable

Input-Output Stability Feng-Li Lian © 2019
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= Example 3.1: Harmonic Oscillator

ey = [z St g+ [ geon ucw

y(k)

[ 1 0]a(k)

e mag( eig(F) ) =1

o ifu(k)=0 = llz(k+ 1| = [l=(0)]]
= the system is stable
e But, if input is a cos or sin signal with w rad/s
= the output contains a sinusoidal function

with growing amplitude

= the system is not BIBO stable
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e Eigenvalues of F N\, = eig(F)

A(z) = apz" + a12" 1+ 4 an

e Characteristic Polynomials
a; & A\
e Root locus method l S _@?
e Nyquist criterion
e Lyapunov’'s method
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Stability Test: Jury’s Stability Criterion

(1918) (1922) (1961)
Schur-Cohn-Jury

A(z) = apz" + az" '+ +a,=0

ao ai an—1 dp
apy
ay ap—1 -+ a1 aop Op = —
a
n—1 n—1 n—1
g = I p—1
an—l
n—1 n—1 n—1 ‘n—1
an—l an—Q (10 Unp—1= n—1
ag
a:; h—1 k h
a; =a; — Rty

k k
ap = ay/ag




Stability Test: Routh’s Stability Criterion (for CT) Feng-LiLian © 2019
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3.6.2 Routh’s Stability Criterion = Routhin 1874
= Hurwitz in 1895

no n—1 2

a(s) =s"+a1s" ' fas" T+ -+ ap_15 + a,. (3.65)

A necessary (but not sufficient) condition for stability is that a/l the coefficients
of the characteristic polynomial be positive.

A system is stable if and only if all the elements in the first column of the Routh
array are positive.

det ! i|
b= — L a1 aja; — as
e a a
(1 a4
We then add subsequent rows to complete the Routh array: / det| m} _ aa—as
D) = —
- ai
‘Row n 55 1 a ag - dct[ 1 u(}
Row =1 ‘n—] aj i as L o a_ar] _ ads—ar
. . 3 3 3= a
Row n—-2 s % by by by - o g
ROW n — 3 \JI*3 . C1 2 c3 - o - 7dc[\i/> /77] bias 7411177
/7] l
B . 5 . " - . det [a u,] N
Row 2 S5 w # o | b1 1as — aybs
- by by
Row 1 5 o
ROW 0 S“: * s e | b1 /)4j| _ bia; —aiby
G by =T
Franklin, Powell, Emami-Naeini 2002
=l =1z . . Feng-Li Lian © 2019
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= Theorem 3.3: Jury's Stability Test

o If ag > O,
then, A(z) = 0 has all roots inside unit disc
— allaf>0,k=0,1,--- ,n—1

e If nO ag is zero,
then, the number of negative a%
= the number of roots outside the unit disc

e Remark:

o If all af > 0,
then,

A(l) > O

ad >0 <— {(_1)n A-1) > 0




Stability Test: Jury’s Stability Criterion Feng-Li Lian © 2019
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= Example: Jury's Stability Test ay  aft=a

A(2) =224 a1z + a»

a ai 1 as = ao
2
1 —a35 al(l—g,Q) o0 = a1
ai(T —ap) 1-a5 14+ ao
[1 a2 M]
2 1+as
\ . - 2
All the roots are inside the unit circle if 1- ay > 0

2
2 CLl(l—aQ)
1—&2—Taz > O
ay < 1
= a» > —1—|—a1
ap > —1—aq

Stability Test: Nyquist and Bode Diagrams Doe22-8tabi20

e DT pulse-transfer function: G(z2)

e Nyquist or Frequency curve

G(7YMy, for wh € [0, 7]

upto to the Nyquist frequency, wy = nw/h

e Note that it is sufficient
to consider the map in wh € [—x, 7]

e Because G(e/¥h) is periodic
with period 27 /h
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= Example 3.3: Frequency Responses

1
s24+14s+1

G(s) =

Zero-order hold sampling 2 = 0.4

0.066z + 0.055
G(z) = —
22 —1.450z+ 0.571
Stability Test: Nyquist and Bode Diagrams Doez2-Stabitr22

= Example 3.3: Frequency Responses
Bode Diagram
. =CT: - --

Gain

0.01f

Imaginary axis

Real axis

Phase

-180

0.1 1 10
Frequency, rad/s

Nyquist Diagram




Stability Test: Nyquist Criterion

» Nyquist Criterion

Closed-loop system

Y(z)

= HCE(Z) UC(Z)

Ho |2
1 |
_ H(z)
1+ H(2)

U.(2)

Feng-Li Lian © 2019
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Closed-loop system characteristic equation

1+H(z2)=0

Stability Test: Nyquist Criterion

i Im
Y%
I,
I
NI 111
——
VI V] Re
B VII

Principle of arguments states

N=Z7Z-P
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Franklin, Powell, Emami-Naeini 2002

Figure 6.17

An s-plane plot of a
contour C; that encircles
the entire RHP

Z and P are the number of zeros and poles
of 1 + H(z) outside the unit disc.

1

Im(s)

[~~~ _ Contour at
~ P " o
K infinity
N
\
\
\
g \\
|
/I Re(s)
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G /
/
/
/
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Stability Test: Nyquist Criterion

= Example 3.4: A Second-order system

h=1
025K
HE) = =05
then
H(ef,(,)) _ 025K (1.5(1 — cos @) —2sin®*® — isinw(2cos ® — 1.5))

(2—2cosw)(1.25 + cos )
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Stability Test: Nyquist Criterion

= Example 3.4: A Second-order system

‘ Im
\%Z1
v
-
117 Re
II

H(™), for w € [0, 7]

e At some w, phase shift > 180°
e Stable if K > 2




Stability Test: Relative Stability Doezs-Stabi 27
= Definitions 3.4 & 3.5: Gain & Phase Margins

e The amplitude or gain margin:

. 1
iwohy — _ —
arg G(e"""o") 0 Amarg G (eiwoh)]
e T he phase margin:
|G(€’L'wch)| — 1 ¢marg == 7T + arg G(e’L’wch)
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Lyapunov’s Second Stability

= Definition 3.6: Lyapunov Function

e V(z) is a Lyapunov function for

z(k+1) = f(z(k)) f(0)=0

1. V(z) is continuous in 2 and V(0) =0
. V(x) is positive definite
3. AV(z) =V (f(z)) —V(z)
IS negative definite
4. V(z) = o0 as |x| = oo

N

e EXxistence of Lyapunov function implies
asymptotic stability for the solution = 0
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1. V() is continuous in z and V(0) =0
2. V(z) is positive definite
3. AV(z) = V(f(z)) — V(z)
is negative definite
4. V(z) = o0 as |z] =

Lyapunov’s Second Stability

= Geometric lllustration

V(x(k+1)

Feng-Li Lian © 2019
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Lyapunov’s Second Stability

. . 1. V() is continuous in z and V(0) =0
= Example 3.6: Lyapunov function 2. V(z) is positive definite
3. AV(z) = V(f(z)) — V(z)
X(k —l— 1) = FX(IC) is negative definite

4. V(z) = o0 as |z] =

Vx)=xPx P >0
AV (x) = V(x(k+ 1)) - V(x(k))
= V(Fx(k)) — V(x(k))
= (Fx(k))'P(Fx(k)) —xTPx
= x'FTPFx —x' Px
=x'(F'PF-P)x =x"(-Q)x =-x"(Q)x
V is a Lyapunov function

iff there existsa P >0 FIPF_P = —Q Q>0

that satisfies the Lyapunov equation




Lyapunov’s Second Stability Dee22-Stabir 1
= Example 3.6: Lyapunov function for CT case

x(t) = Ax(t)

Vix) =xPx P >0

V(x) =x'Px+x'Px

xI'PAx 4+ (Ax)TPx

= xI'PAx + xT ATPx
= x(PA + ATP)x
. PA+ATP=-Q
=x (—Q)x
= —x' (Q)x
Khalil 2002
Lyapunov’s Second Stability Doe22-Stabitr 52
= Example 3.6: Lyapunov function PO -P=-Q Q>0
04 O 10 [ 119 -025
cl>_[—0.4 06| “=|o 1] :>P_[—025 2.05]

State x,




