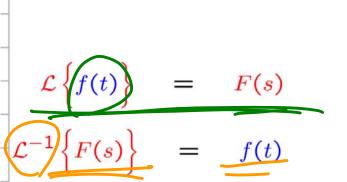
Fall 2019

微分方程 Differential Equations

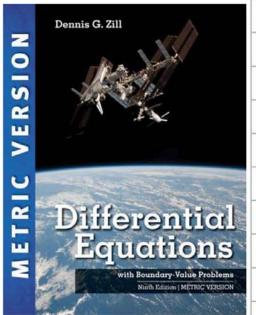
Unit 07.2 Inverse Transforms and Transforms of Derivatives



Feng-Li Lian NTU-EE

Sep19 – Jan20

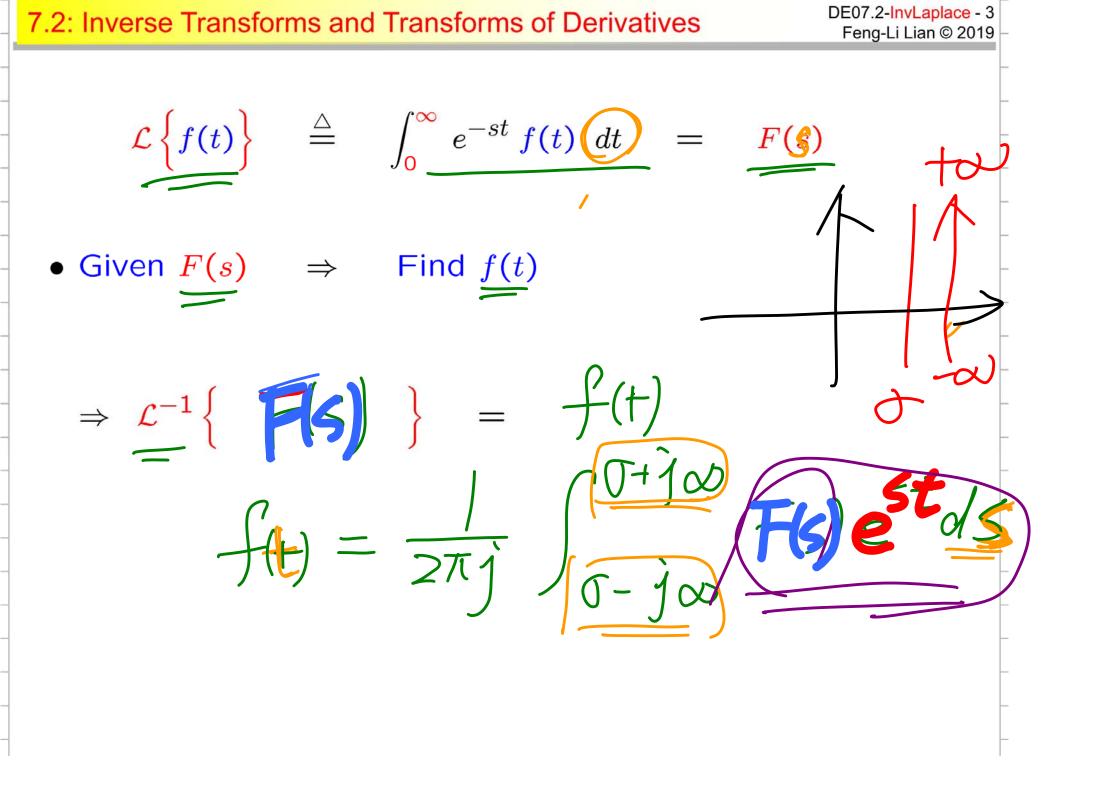
Figures and images used in these lecture notes are adopted from **Differential Equations with Boundary-Value Problems**, 9th Ed., D.G. Zill, 2018 (Metric Version)

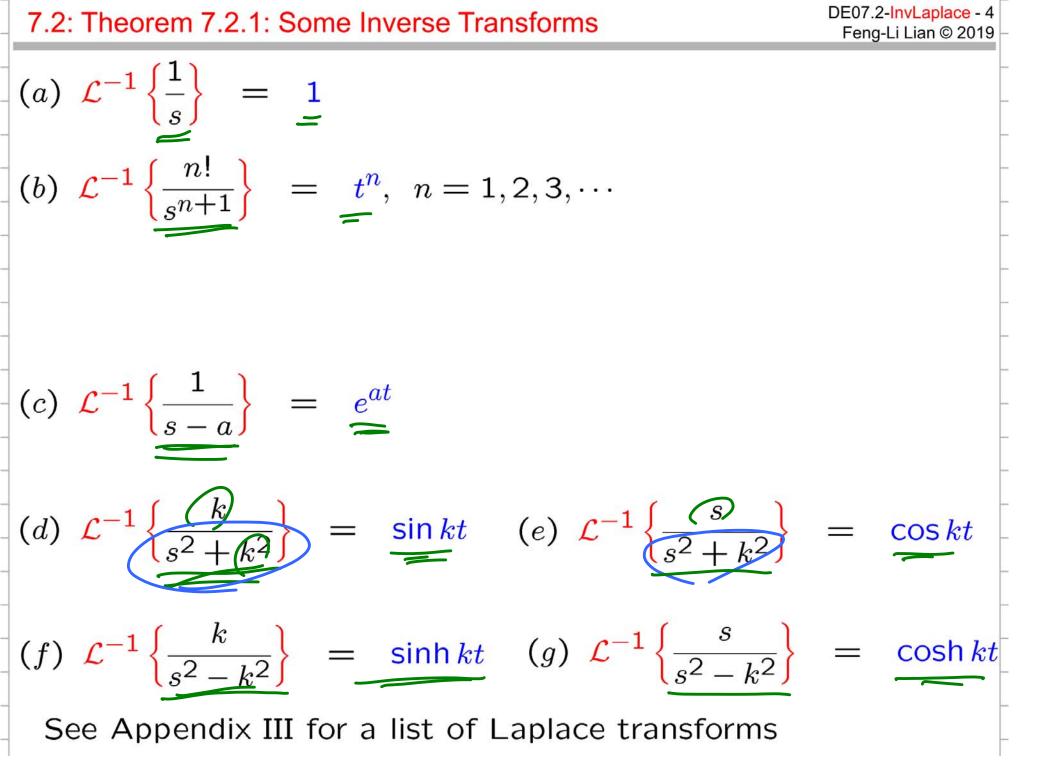


Outline

DE07.2-InvLaplace - 2 Feng-Li Lian © 2019

- 7.1: Definition of Laplace Transform
 - 7.2: Inverse Transforms and Transforms of Derivatives
 - 7.2.1: Inverse Transforms
 - 7.2.2: Transforms of Derivatives
 - 7.3: Operational Properties I
 - 7.3.1: Translation on the s-Axis
 - 7.3.2: Translation on the t-Axis
 - 7.4: Operational Properties II
 - 7.4.1: Derivatives of a Transform
 - 7.4.2: Transforms of Integrals
 - 7.4.3: Transform of a Periodic Function
 - 7.5: The Dirac Delta Function
 - 7.6: Systems of Linear Differential Equations

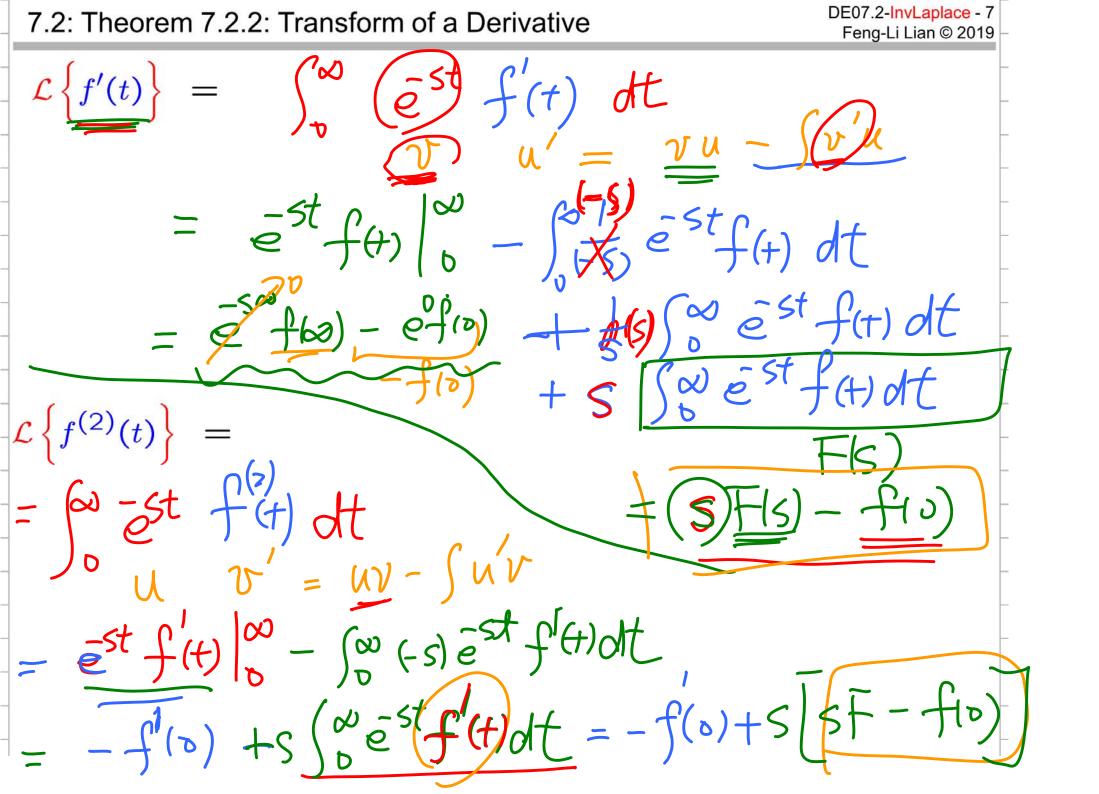




-

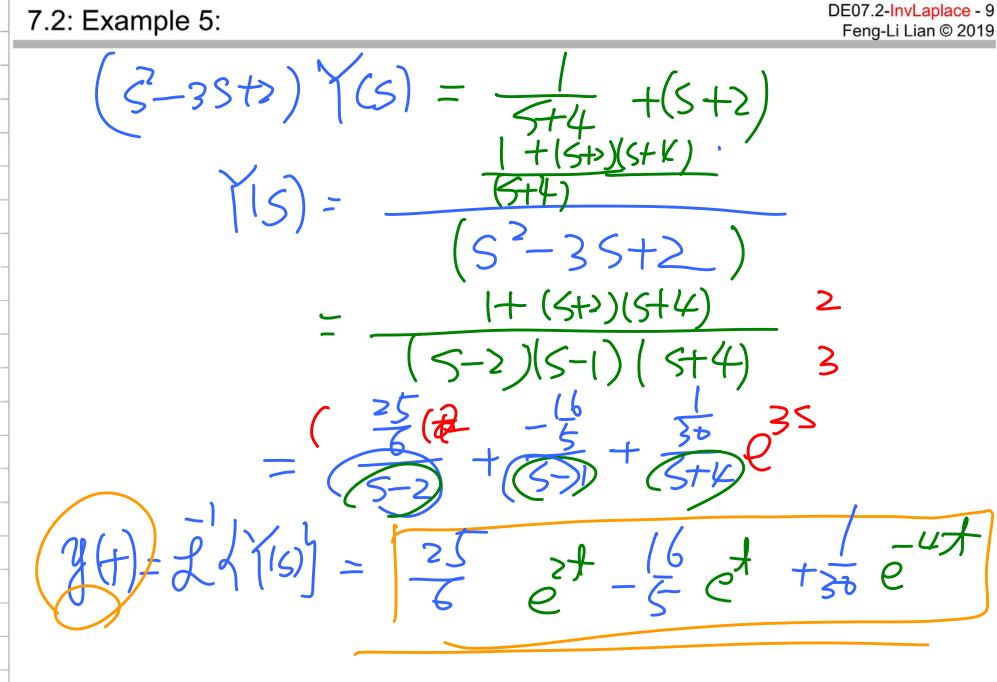
DE07.2-InvLaplace - 5 7.2: Example Feng-Li Lian © 2019 B 3s - 2+ 4 < 3 S V S 4 记 Á s (3+4) + BS (3+4) + C (3+4) + (3 1 C (4) 3 4 Š 4 4 8 + 8 53 7 St $-\frac{1}{2}\frac{1}{2}t^{2}-\frac{1}{8}cos_{2}t-\frac{3}{8}$ sinet

7.2: Theorem 7.2.2: Transform of a Derivative	
• If $f(f')$, (\cdot) , $f^{(n-1)}$ are Continuous on $[0, \infty)$	-
are of exponental order C	-
• and, if $f^{(n)}$ is precevite continues on $[0,\infty)$	-
$\mathcal{L}\left\{\frac{f(t)}{f(t)}\right\} = \underline{F(s)}$	_
• then $\mathcal{L}\left\{ f(t) \right\} = \int_{-\infty}^{N} f(s) (r)$	-
$\eta' = \chi'' = \chi'' = \chi'' = \eta' = \eta' = \eta' = \eta'$	_
$\int f'(0) = \int f'(0) = \frac{1}{2} \int f'(0) \int f'(0) f'(0) = \frac{1}{2} \int f'(0) \int f'(0) f'(0) = \frac{1}{2} \int f'(0) \int f'(0) f'(0) f'(0) = \frac{1}{2} \int f'(0) f'(0) f'(0) f'(0) f'(0) = \frac{1}{2} \int f'(0) f'(0) f'(0) f'(0) f'(0) f'(0) = \frac{1}{2} \int f'(0) f'(0) f'(0) f'(0) f'(0) f'(0) f'(0) f'(0) = \frac{1}{2} \int f'(0) f'(0$	
$-\frac{3}{3}(n) - \frac{3}{3}(n) - $	_



 $= - f(s) + s^{2}F - sf(s)$ = $s^{2}F - sf(s) - f(s)$

DE07.2-InvLaplace - 8 7.2: Example 5: Solving a 2nd-Order IVP Feng-Li Lian © 2019 y(0) = 1y'(0) = 5 e^{-t} y'' - (3y' + 3y)=(5)- 32311 +>2314 z.)<=-4 4'(0) $= s^{2} Y(s) - s y(s) -3(S^{1}(5) - y(5))$ +2 YIS) 15) - 5(g(0) - g(0) + 3(g(0) -35-2 $(s^2-35+2)(1/5)(-s-5+3) = 5+4$



Feng-Li Lian © 2019

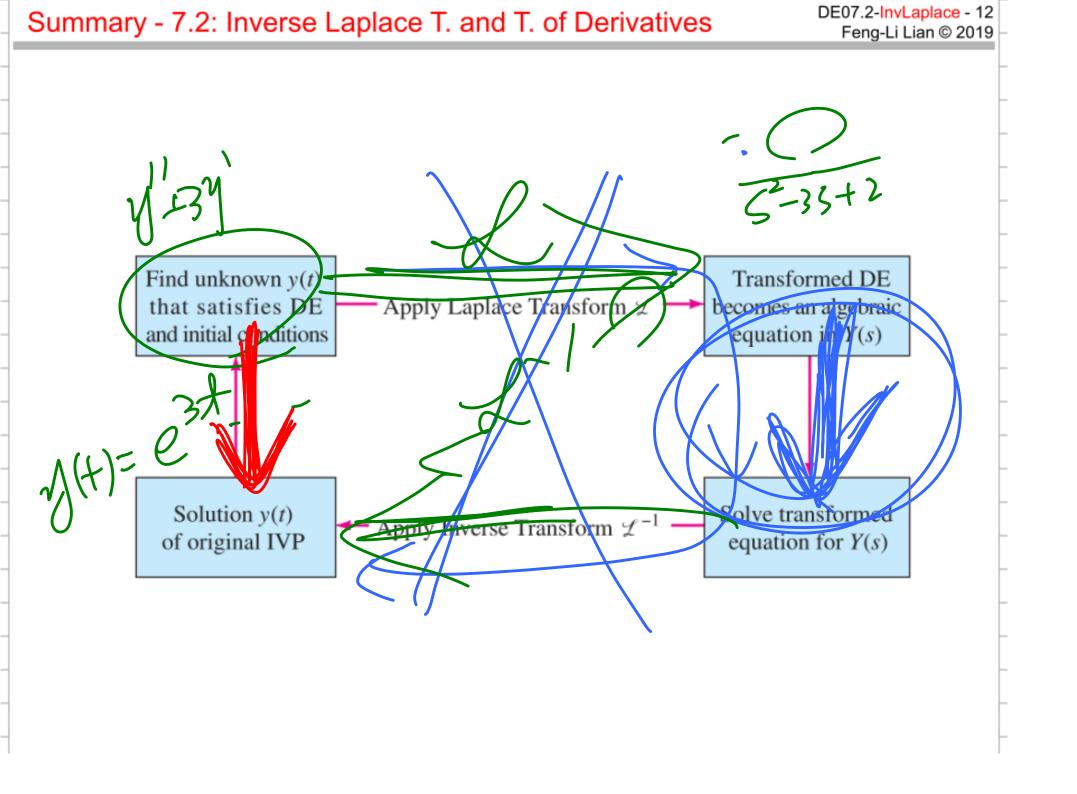
7.2: Example 5:

Summary - 7.2: Inverse Laplace T. and T. of Derivatives

$$\mathcal{L}\left\{f(t)\right\} \stackrel{\Delta}{=} \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$$

$$\mathcal{L}^{-1}\left\{F(s)\right\} = \underbrace{\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st} F(s) ds}_{\gamma-i\infty} = f(t)$$
(a) $\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = \underline{1}$
(b) $\mathcal{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\} = t^{n}, n = 1, 2, 3, \cdots$
(c) $\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}$
(d) $\mathcal{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\} = \sin kt$ (e) $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\} = \cos kt$
(f) $\mathcal{L}^{-1}\left\{\frac{k}{s^{2}-k^{2}}\right\} = \sinh kt$ (g) $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}-k^{2}}\right\} = \cosh kt$

DE07.2-InvLaplace - 11 Summary - 7.2: Inverse Laplace T. and T. of Derivatives Feng-Li Lian © 2019 $\mathcal{L}\left\{f(t)\right\} \stackrel{\Delta}{=} \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$ $\mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = \left(s^2 F(s) - sf(0) - f'(0)\right)$ $\mathcal{L}\left\{f^{(n)}(t)\right\} = \left(s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0)\right)$ y'' - 3y' + 2y $\mathcal{L}\left\{y'' - 3y' + 2y\right\} = (s^2 - 3s + 2) Y(s)$ -sy(0) - y'(0) + 3y(0) $\mathcal{L}\left\{e^{-4t}\right\} = \frac{1}{s+4}$ $\not \not + \cdots \not \rightarrow y(t) = \cdots$ Y(s)



7.2: Example 5: Solving a	a 2nd-Order IVP		DE07.2 <mark>-InvLaplace</mark> - 13 Feng-Li Lian © 2019
y'' - 3y' + 2y	, =	e^{-4t}	$\int y(0) = 1$
Method in 4.2:			$\begin{cases} y(0) = 1 \\ y'(0) = 5 \end{cases}$
$y_1(t) = e^t$			-
y(t) = u(t) y	$_{1}(t)$	=	$: u e^t$
$y'(t) = u' y_1 - $	$+ u y'_1$	=	$(u' + u) e^t$
$y''(t) = u'' y_1 \cdot$	$+ 2 u' y_1' + u y_1''$	=	$(u'' + 2u' + u) e^t$
$\Rightarrow (u'' + 2u' + u) e^t$	$-3(u'+u) e^t$	$+2u e^t$	= 0
\Rightarrow $(u'' - u') e^t$			= 0
\Rightarrow $(u''-u') = 0$			-
\rightarrow let $w = u'$	$\Rightarrow e^{-t} w = c_1$	\Rightarrow	$\mathbf{u} = c_1 \ \mathbf{e}^t + c_2$
\Rightarrow $(w'-w) = 0$	$\Rightarrow w = c_1 e^t$	\Rightarrow	$y = u y_1$
\Rightarrow I.F. = e^{-t}	$\Rightarrow u' = w =$	$c_1 \ e^t$	$= c_1 e^{2t} + c_2 e^t$
$\Rightarrow \frac{d}{dt} \left[e^{-t} w \right] = 0$	$\Rightarrow u = \int c_1 e^{t}$	dt	

7.2: Example 5: Solving a 2nd-O	rder IVP	DE07.2- <mark>InvLaplace</mark> - 14 Feng-Li Lian © 2019
y'' - 3y' + 2y	$= e^{-4t}$	$\begin{cases} y(0) = 1 \\ y'(0) = 5 \end{cases}$
Method in 4.3 & 4.4:		$\int y'(0) = 5$
$y(t) = e^{mt}$	$\Rightarrow y_p(t) = A$	
$y'(t) = me^{mt}$	$y_p'(t) = A$	$(-4)e^{-4t}$
$y''(t) = m^2 e^{mt}$	$y_p''(t) = A$	$(-4)^2 e^{-4t}$
y'' - 3y' + 2y = 0	$y_p'' - {\sf 3} y_p'$:	$+ 2y_p = e^{-4t}$
$\Rightarrow m^2 - 3m + 2 = 0$	(16A + 12A + 2A)	$e^{-4t} = e^{-4t}$
$\Rightarrow m_{1,2} = 1,2$		$\Rightarrow A = \frac{1}{30}$
$\Rightarrow y_c(t) = c_1 e^{1t} + c_2 e^{2t}$	$\Rightarrow y_p(t) = \frac{1}{2}$	$\frac{1}{30}e^{-4t}$
$\Rightarrow y(t) = y_c(t) + y_p(t)$	$(t) = c_1 e^{1t} + c_2 e^{2t} + $	$\frac{1}{30}e^{-4t}$
$\begin{cases} y(0) = 1 \\ y'(0) = 5 \end{cases}$	$=\frac{-16}{5}e^{1t}+\frac{25}{6}e^{2t}$	$t^{t} + \frac{1}{30}e^{-4t}$

7.2: Example 5: Solving a 2	nd-Order IVP		DE07.2 <mark>-InvLaplace</mark> - 15 Feng-Li Lian © 2019 -
y'' - 3y' + 2y	=	e^{-4t}	$\begin{cases} y(0) = 1 \\ y'(0) = 5 \end{cases}$
Method in 7.2:			$\int y'(0) = 5$
$\mathcal{L}\left\{y''-3y'+2y\right\}$	—	$\mathcal{L}\left\{e^{-4t} ight\}$	-
$\Rightarrow (s^2 - 3s + 2)Y($			3 +
$\Rightarrow (s^2 - 3s + 2)Y(s)$			
$\Rightarrow Y(s) = \frac{1}{(s^2 - 3s + 1)}$	-2) (y(0)(s	$(-3) + y'(0)\Big)$	 zero-input response
$+ \frac{1}{(s^2 - 3s + 3s^2)}$	$(\frac{1}{s+4})$)	 zero-state response
$= \left(\frac{-16}{5}\right) \frac{1}{s}$	$\frac{1}{-1} + \left(\frac{25}{6}\right)$	$\left(\frac{1}{s-2} + \left(\frac{1}{3}\right)\right)$	$\left(\frac{1}{s+4}\right) \frac{1}{s+4}$
$\Rightarrow y(t) = \left(\frac{-16}{5}\right) e^{-16}$	$\frac{1t}{6} + \left(\frac{25}{6}\right)$	$\left(\frac{2}{3}\right) e^{2t} + \left(\frac{2}{3}\right)$	$\left(\frac{1}{0}\right) e^{-4t}$