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Abstract The discussion of Control Science and Feedback Theory is divided
into three parts: (1) brief history of control; (2) classical control; (3)
modern control. Brief histroy of control introduces the history of control
science and feedback theory. Classical control covers the root-locus de-
sign methods and frequency-response design methods. Modern control
inlcudes the disucssion of the state-space modelling and related con-
trol analysis and design methods such as state feedback and estimation,
optimal control, adaptive control, and robust control etc.
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4. Modern Control Methodologies
******************************************************************

*** Modern Control Analysis & Design by Feng-Li LIAN ***

******************************************************************
Most analysis and design approaches in modern control stem from

the state-space mathematical model of physcial systems. Based on the
state-space model, fundamental properties of a physical system such
as stability, controllability, and observability, can be analyzed. These
perperties are the key measures to characterize the system. If any of
the system properties does not fulfill the requirement, further design
methodologies are used to modify them. Generally speaking, design
methodologies can be classified into two categories: fundamental and
advanced. Fundamental design methodologies include state feedback,
state estimation, and output feedback. Advanced desgin methodologies
include optimal control: LQR and LQG, adaptive control, and robust
control.

Key criteria of utilizing any of them are simply discussed as follows.
Detailed discussions and related mathematical derivations can be in the
following sections. If the system states are not stable, but controllable,
they can be stabilized by a state feedback law. If the system states are
not measureable, but observable, they can estimated by a state esimation
agorithm. An output feedback approach tackles the problem of the above
two cases. When the cost of the system states and inputs is subjected to
certain weighting mechansim, optimal control is the major tool to handle
this type of problems. Optimal control has two classes of methods: linear
quadratic regulation (LQR) and linear quadratic guassion (LQG) that
are for systems without and with random external inputs, respectively.
When a system has some known uncertainty, both adaptive control and
robust control can be applied. Adaptive control is mainly for the system
with structured uncertainty, or unknown constant uncertainty; while
robust control is mainly for the system with un-structured uncertainty,
or unknown but bounded uncertainty.

In the following, we discuss fundamental system descriptions, prop-
erties of the general model, fundamental design methodologies, and ad-
vanced design methodologies.

4.1 Fundamental System Descriptions by
State-Space Model

Modeling of Dynamcal Systems. In general, most dynamical
systems in electrical engineering, mechanical engineering, chemical en-
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gineering, and other engineering disciplines, are modeled by a set of a
finite number of coupled first-order ordinary differential equations:

ẋ1 = f1(t, x1, x2, · · · , xn, u1, · · · , up, v1, · · · , vp)
ẋ2 = f2(t, x1, x2, · · · , xn, u1, · · · , up, v1, · · · , vp)

...
...

ẋn = fn(t, x1, x2, · · · , xn, u1, · · · , up, v1, · · · , vp),

and algebraic equations:

y1 = h1(t, x1, x2, · · · , xn, u1, · · · , up, w1, · · · , wq)
y2 = h2(t, x1, x2, · · · , xn, u1, · · · , up, w1, · · · , wq)
...

...
yq = hq(t, x1, x2, · · · , xn, u1, · · · , up, w1, · · · , wq),

where xi, i = 1, · · ·n, yj , j = 1, · · · q, uk, k = 1, · · · p, wj , j = 1, · · · q,
vk, k = 1, · · · p, are the state, output, input, sensing noice variables,
actuation disturbance of the system, and ẋi denotes the derivative of xi

with respect to the time variable t.
For notation simplicity, define

x̄ =


x1

x2
...

xn

 , ȳ =


y1

y2
...
yq

 , ū =


u1

u2
...

up

 , w̄ =


w1

w2
...

wp

 , v̄ =


v1

v2
...
vq

 ,

f̄(t, x̄, ū, v̄) =


f1(t, x̄, ū, v̄)
f2(t, x̄, ū, v̄)

...
fn(t, x̄, ū, v̄)

 , h̄(t, x̄, ū, w̄) =


h1(t, x̄, ū, w̄)
h2(t, x̄, ū, w̄)

...
hq(t, x̄, ū, w̄)

 ,

and rewrite the set of differential and algebraic equations as follows:

˙̄x = f̄(t, x̄, ū, v̄)
ȳ = h̄(t, x̄, ū, w̄)

that are called the state and output equations, respectively, both to-
gether as the state-space model, or simply the state model. Normally, w̄
and v̄ are the vectors of the actuation disturbance and the sensing noice,
respectively, and they are considered as any time-varying, or maybe
time-invariant, uncertaint quantities affecting the true values of state,
input, and output variables.



4 Control Science and Feedback Theory (05/31/05)

Figure 1.1. General system description.

Unforced Systems. If the input, disturbance, and noise to the
system is zero, i.e., ū = 0̄, ū = γ̄(t), or ū = γ̄(x̄), and w̄ = 0̄, v̄ = 0̄,
the type of systems are called unforced systems and can be described as
follows:

˙̄x = f̄(t, x̄)
ȳ = h̄(t, x̄)

Automonous or Time-Invariant Systems. Furthermore, if the
function f̄ does not depend explicitly on t, that is,

˙̄x = f̄(x̄)
ȳ = h̄(x̄)

the system is said to be autonomous or time-invariant.

Linear Time-Invariant Systems. If the system is linear, time-
invariant, and w̄ = 0̄, v̄ = 0̄, i.e., without any disturbance and noise, the
LTI model can be described as follows:

˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄ + ¯̄A · ū

where ¯̄A, ¯̄B, ¯̄C, ¯̄D are constant matrices.

4.2 Properties of the general model
The key properties of a system are stability, controllability, and ob-

servability. Their definitions and the tools (theorems) to analyze these
properties are discussed as follows.
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Figure 1.2. Linear system description.

Stability. The definition of stability is from the state point of view.

Definition 1: [Khalil 2002] [Chen 1999]
The equilibrium point x̄ = 0̄ of the autonomous system: ˙̄x = f̄(x̄) is

stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

||x̄(0)|| < δ ⇒ ||x̄(t)|| < ε,∀t ≥ 0.

x̄ = 0̄ is unstable if it is not stable. x̄ = 0̄ is asymptotically stable if it
is stable and δ can be chosen such that

||x̄(0̄)|| < δ ⇒ lim
t→∞

x̄(t) = 0̄

That is, the autonomous system ˙̄x = f̄(x̄) is stable if every finite
intial state x̄0 excites a bounded response. It is asymptotically stable if
every finite initial state excites a bounded response, which, in addition,
approaches 0 as t →∞.

Theorems used to determine whether a system is stable or not.

Theorem 1: [Khalil 2002]
Let x̄ = 0̄ be an equilbrium point for the autonomous system and D ⊂

Rn be a domain containing x̄ = 0̄. Let V : D → R be a continuously
differentiable function such that

V (0̄) = 0 and V (x̄) > 0 in D − {0̄}

V̇ (x̄) ≤ 0 in D

Then, x̄ = 0̄ is stable. Moreover, if

V̇ (x̄) < 0 in D − {0̄}

then x̄ = 0̄ is asymptotically stable.
For linear systems, the stability theorem can be stated as follows.
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Theorem 2: [Chen 1999]
The equation ˙̄x = ¯̄A·x̄ is marginally stable if and only if all eigenvalues

of ¯̄A have zero or negative real parts and those with zero real parts are
simple roots of the minimal polynomial of ¯̄A.

The equation ˙̄x = ¯̄A · x̄ is asymptotically stable if and only if all
eigenvalues of ¯̄A have negative real parts.

Controllability. The definition of controllability.

Definition 2: [Chen 1999] [Saystry 1999]
The state equation is said to be controllable if for any initial state x̄0

and any final state x̄f , there exist a time tf and an admissible input
defined on [t0, tf ] that transfers x̄(t0) = x̄0 to x̄(tf ) = x̄f . Otherwise, it
is said to be uncontrollable.

The theorems to analyze the controllability condition of a nonlinear
system is too complex. Here only the theorems for linear systems are
stated.
Theorem 3: [Chen 1999]

The LTI system is controllable or ( ¯̄A, ¯̄B is a controllable pair if one
of the following is satisfied.

1 The n× n matrix

¯̄W c(t) =
∫ t

t0

e
¯̄Aτ · ¯̄B · ¯̄BT · e

¯̄AT
τdτ

is nonsingular for any t > t0.

2 The n× np controllability matrix

¯̄C = [ ¯̄B ¯̄A · ¯̄B ¯̄A2 · ¯̄B · · · ¯̄An−1 · ¯̄B ]

has rank n (full row rank).

3 The n × (n + p) matrix [ ¯̄A − λ¯̄I, ¯̄B ] has full row rank at every
eigenvalue λ of ¯̄A.

4 If, in addition, all eigenvalue of ¯̄A have negative real parts, then
the unique solution of

¯̄A · ¯̄W c + ¯̄W c · ¯̄AT = − ¯̄B · ¯̄BT

is positive definite. The solution is called the controllability Gramian
and can be expressed as
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¯̄W c =
∫ ∞

0
e

¯̄Aτ · ¯̄B · ¯̄BT · e
¯̄AT

τdτ

What a controllable system can do, see state feedback section.

Observability. The definition of observability.

Definition 3: [Chen 1999]
The state equation is said to be observable if for any unknown initial

state x̄0 there exist a finite time T such that the knowledge of the input
ū and the output ȳ over [0, T ] suffices to determine uniquely the initial
state x̄0. Otherwise, it is said to be unobservable.

The theorem to analyze the observability condition of a linear system
is stated as follows.
Theorem 4: [Chen 1999]

The LTI system is observable or ( ¯̄A, ¯̄C) is a observable pair if one of
the following is satisfied.

1 The n× n matrix

¯̄W o(t) =
∫ t

0
e

¯̄AT
τ · ¯̄CT · ¯̄C · e

¯̄Aτdτ

is nonsingular for any t > 0.

2 The nq × n observability matrix

¯̄O =


¯̄C

¯̄C · ¯̄A
...

¯̄C · ¯̄An−1


has rank n (full column rank).

3 The (n + q)× n matrix
[ ¯̄A− λ¯̄I

¯̄C

]
has full column rank at every

eigenvalue, λ, of ¯̄A.

4 If, in addition, all eigenvalue of ¯̄A have negative real parts, then
the unique solution of

¯̄AT · ¯̄W o + ¯̄W o · ¯̄A = − ¯̄CT ¯̄C
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is positive definite. The solution is called the observability Gramian
and can be expressed as

¯̄W o =
∫ ∞

0
e

¯̄AT
τ · ¯̄CT · ¯̄C · e

¯̄Aτdτ

What a observable system can do, see state estimation section.
The controllability and obervability theorems show the duality be-

tween the pairs ( ¯̄A, ¯̄B) and ( ¯̄A, ¯̄C).

Kalman Canonical Decomposition. Based on the definition
of controllability and observability, the overall system states x̄ can de-
composed into four parts, namely, both controlable and observable states
x̄CO, controlable but unobservable states x̄CŌ, observable but uncontro-
lable states x̄C̄O, and neither controlable nor observable states x̄C̄Ō.

The followling is the Kalman decomposition theorem.
Theorem 5: [Chen 1999]

Every state-space model of LTI systems can be transformed, by an
equivalence transformation, into the following canonical form:


˙̄xCO

˙̄xCŌ

˙̄xC̄O

˙̄xC̄Ō

 =


¯̄ACO

¯̄0 ¯̄A13
¯̄A

¯̄A21
¯̄ACŌ

¯̄A23
¯̄A24

¯̄0 ¯̄0 ¯̄AC̄O
¯̄0

¯̄A ¯̄0 ¯̄A43
¯̄AC̄Ō




x̄CO

x̄CŌ

x̄C̄O

x̄C̄Ō

 +


¯̄BCO

¯̄BCŌ

¯̄0
¯̄0

 ū

ȳ =
[ ¯̄CCO

¯̄0 ¯̄CC̄O
¯̄0

] 
x̄CO

x̄CŌ

x̄C̄O

x̄C̄Ō

 + ¯̄Dū

Furthermore, the state equation is zero-state equivalent to the con-
trollable and observable state equation

˙̄xCO = ¯̄ACO · x̄CO + ¯̄BCO · ū
ȳ = ¯̄CCO · x̄CO + ¯̄D · ū

and has the transfer function matrix

ˆ̄̄
G(s) = ¯̄CCO · (s¯̄I − ¯̄ACO)−1 · ¯̄BCO + ¯̄D
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Figure 1.3. Kalman decomposition.

Stabilizability. The definition of stabilizability.

Definition 2: [Chen 1999]
The state equation is said to be stabilizable if the state equation is

not controllable and the unstable subspace is controllable. That is, the
uncontrollable subspace should be stable. Hence, a controlable state
equation is stabilizable.

4.3 Fundamental Design Methodologies
State Feedback. Consider a system described by the following
state-space equation

˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄

In state feedback, the input u is given by

ū = r̄ − ¯̄K · x̄

where ¯̄K is a p× n real constant matrix and r̄ is a reference signal.
Then, substituting ū into the state-space equation, yields
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˙̄x = (¯̄A− ¯̄B · ¯̄K · x̄ + ¯̄B · r̄ (1.1)

ȳ = ¯̄C · x̄ (1.2)

Then, all eigenvalues of ( ¯̄A− ¯̄B · ¯̄K) can be assigned arbitrarily (pro-
vided complex conjugate eigenvalues are assigned in pairs) by selecting
a real constant ¯̄K if and only if ( ¯̄A, ¯̄B) is controllable.

Figure 1.4. State feedback.

(Deterministic) State Estimation. The problem is to use avail-
able input singal ū and output signal ȳ as the new input to a state-
estimation system whose output gives an estimate of the state x̄. Con-
sider a system described by the following state-space equation

˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄

Design an full-dimensional state estimator described as follows:

˙̄xe = ¯̄A · x̄e + ¯̄B · ū + ¯̄L · (ȳ − ¯̄C · x̄e)

= ( ¯̄A− ¯̄L · ¯̄C) · x̄e + ¯̄B · ū + ¯̄L · ȳ

where x̄e is an estimate of the true state x̄ and ¯̄L is a n× q real constant
matrix.

Define the error vector as

ē = x̄− x̄e

The error dynamics can experessed as follows:
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˙̄e = (¯̄A− ¯̄L · ¯̄C) · ē

Then, all eigenvalues of ( ¯̄A− ¯̄L· ¯̄C) can be assigned arbitrarily (provided
complex conjugate eigenvalues are assigned in pairs) by selecting a real
constant ¯̄L if and only if ( ¯̄A, ¯̄C) is controllable.

Figure 1.5. State estimation.

Output Feedback. When the system state x̄ is not available for
state feedback, the problem is to use available input singal ū and output
signal ȳ to estimate x̄. Then, use the state estimate x̄e to design state
feedback. This is called output feedback.

Consider a system described by the following state-space equation

˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄

Design an full-dimensional state estimator described as follows:

˙̄xe = (¯̄A− ¯̄L · ¯̄C) · x̄e + ¯̄B · ū + ¯̄L · ȳ

and implement the state feedback law as follows:

ū = r̄ − ¯̄A · x̄e

The overall system can be described as follows:
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˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄
˙̄xe = (¯̄A− ¯̄L · ¯̄C) · x̄e + ¯̄B · (r̄ − ¯̄K · x̄e) + ¯̄L · ¯̄C · x̄

They can be combined as

[
˙̄x
˙̄xe

]
=

[ ¯̄A − ¯̄B · ¯̄K
¯̄L · ¯̄C ¯̄A− ¯̄L · ¯̄C − ¯̄B · ¯̄K

] [
x̄
ˆ̄x

]
+

[ ¯̄B
¯̄B

]
r̄

ȳ =
[ ¯̄C ¯̄0

] [
x̄
x̄e

]
Introduce the following equivalence transformation:

[
x̄
ē

]
=

[
x̄

x̄− x̄e

]
=

[ ¯̄I ¯̄0
¯̄I −¯̄I

] [
x̄
x̄e

]
and obtain the following equivalent state equation:

[
˙̄x
˙̄e

]
=

[ ¯̄A− ¯̄B · ¯̄K ¯̄B · ¯̄K
¯̄0 ¯̄A− ¯̄L · ¯̄C

] [
x̄
ē

]
+

[ ¯̄B
¯̄0

]
r̄

ȳ =
[ ¯̄C ¯̄0

] [
x̄
ē

]
Hence, the eigenvalues of the system matrix of the overall system

are the union of those of ¯̄A − ¯̄B · ¯̄K and ¯̄A − ¯̄L · ¯̄C. Thus, inserting
the state estimator does not affect the eigenvalues of the original state
feedback; nor are the eigenvalues of the state estimator affected by the
connection. Therefore, teh design of state feedback and the design of the
state estimator can be carried out independently. This is the so-called
the separation principle of the estimator-controller design procedure.

4.4 Advanced Design Methodologies
Optimal Control: Linear Quadratic Regulation (LQR) Method
(Optimal State Feedback Gain). Two of key necessities of
designing a controller for a system are to bound the magnitude of the
various state variables in the system by practical consideration and to
keep some measure of control magnitude bounded or even small during
the course of a control action [4].
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Figure 1.6. Output feedback.

One way to achieve the design goal is to set up a quadratic perfor-
mance index J(x̄(t0), ū(·), t0), and find a control law ū∗(t) which mini-
mizes it.

Consider a system described by the following state-space equation

˙̄x = ¯̄A · x̄ + ¯̄B · ū
ȳ = ¯̄C · x̄

Then, the quadratic performance index is defined as:

J(x̄(t0), ū(·), t0) =
∫ tf

t0

(
ūT(t) · ¯̄R(t) · ū(t) + x̄T(t) · ¯̄Q(t) · x̄(t)

)
dt

+ x̄T(tf ) · ¯̄Qf · x̄(tf )

where ¯̄R(t) = ¯̄RT(t) > 0, ¯̄Q(t) = ¯̄QT(t) ≥ 0,∀t ≥ t0, are continuously
differential weighting matrices and ¯̄Qf is a constant matrix.

The optimal control law minimizing the designated quadratic perfor-
mance index is as:

ū∗(t) = − ¯̄R−1(t) · ¯̄BT(t) · ¯̄P (t) · x̄(t)

where ¯̄P (t) is symmetric and the solution of the following matrix Riccati
equation:
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− ˙̄̄
P (t) = ¯̄P (t) · ¯̄A(t) + ¯̄AT(t) · ¯̄P (t)− ¯̄P (t) · ¯̄B(t) · ¯̄R−1(t) · ¯̄BT(t) · ¯̄P (t) + ¯̄Q(t)

with ¯̄P (tf ) = ¯̄Q(tf )

And the optimum performance index can be described as

J∗(x̄(t), t) = x̄T(t) · ¯̄P (t) · x̄(t)

Derivation of LQR Method. The optimal solution for the
quadratic performance index is assumed to have the form [4]:

J∗(x̄(t), t) = x̄T(t) · ¯̄P (t) · x̄(t)

for some matrix ¯̄P (t), with loss of generality symmetric. If ¯̄P (t) is not
symmetric, it may be replaced by the symmetric matrix 1

2 ·[
¯̄P (t)+ ¯̄PT(t)].

From the Hamilton-Jacobi equation:

∂J∗(x̄(t), t)
∂t

= − lim
ū(t)

{
l(x̄(t), ū(t), t) +

[
∂J∗(x̄(t), t)

∂x̄

]T

· f̄(x̄(t), ū(t), t)

}
where

l(x̄(t), ū(t), t) = ūT(t) · ¯̄R(t) · ū(t) + x̄T(t) · ¯̄Q(t) · x̄(t),[
∂J∗(x̄(t), t)

∂x̄

]T

= 2 · x̄T(t) · ¯̄P (t),

and f̄(x̄(t), ū(t), t) = ¯̄A(t) · x̄(t) + ¯̄B(t) · ū(t)

Therefore,

x̄T · ˙̄̄
P · x̄ = − lim

ū(t)

{
ūT · ¯̄R · ū + x̄T · ¯̄Q · x̄ + 2 · x̄T · ¯̄P · ¯̄A · x̄ + 2 · x̄T · ¯̄P · ¯̄B · ū

}
The expression on the right-hand side is:

{ · · · } = (ū + ¯̄R−1 · ¯̄BT · ¯̄P · x̄)T · ¯̄R · (ū + ¯̄R−1 · ¯̄BT · ¯̄P · x̄)

+ x̄T · ( ¯̄Q− ¯̄P · ¯̄B · ¯̄R−1 · ¯̄BT · ¯̄P + ¯̄P · ¯̄A + ¯̄AT · ¯̄P ) · x̄

Because ¯̄R is positive definite, the minimum solution is:

ū∗(t) = − ¯̄R−1(t) · ¯̄BT(t) · ¯̄P (t) · x̄(t)

Therefore, one can obtain:

x̄ · ˙̄̄
P · x̄ = −x̄

[
¯̄Q− ¯̄P · ¯̄B · ¯̄R−1 · ¯̄BT · ¯̄P + ¯̄P · ¯̄A + ¯̄AT · ¯̄P

]
· x̄
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This equation holds for all x̄; therefore,

− ˙̄̄
P = ¯̄P · ¯̄A + ¯̄AT · ¯̄P − ¯̄P · ¯̄B · ¯̄R−1 · ¯̄BT · ¯̄P + ¯̄Q

which is the matrix Riccati equation with the boundary condition
¯̄P (tf ) = ¯̄Qf .

Optimal Control: Linear Quadratic Guassion (LQG) Method
(Optimal Statistical State Estimation). If both the actuation
disturbance and sensing noise are present, the system can be described
as [4]:

˙̄x = ¯̄A · x̄ + ¯̄B · ū + v̄

ȳ = ¯̄C · x̄ + w̄

Suppose that v̄(·), w̄(·), x̄(t0) are indepedently and gaussian with

E
{

v̄(t) · v̄T(τ)
}

= ¯̄Qe(t)δ(t− τ), E
{

v̄(t)
}
≡ 0̄,

E
{

w̄(t) · w̄T(τ)
}

= ¯̄Re(t)δ(t− τ), E
{

w̄(t)
}
≡ 0̄,

E

{ (
x̄(t0)− m̄

)
·
(
x̄(t0)− m̄

)T
}

= ¯̄P e0, E
{

x̄(t0)
}
≡ m̄,

E
{

x̄(t0) · v̄T(t)
}

= E
{

x̄(t0) · w̄T(t)
}

= ¯̄0, ∀t,

E
{

v̄(t) · w̄T(t)
}

= ¯̄0, ∀t, τ

where ¯̄Qe(t) ≥ 0, ¯̄Re(t) > 0.
Since the exact value of the state variables x̄ is not measurable, the

state should be estimated by the following dynamic equation:

˙̄xe = (¯̄A− ¯̄L · ¯̄C) · x̄e + ¯̄B · ū + ¯̄L · ȳ, x̄e(t0) = m̄

where the estimation gain ¯̄L is given from

¯̄L = ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1
e (t)

where ¯̄P e(t) is symmetric nonnegative definite and the solution of the
following matrix Riccati equation:

˙̄̄
P e(t) = ¯̄P e(t) · ¯̄AT(t) + ¯̄A(t) · ¯̄P e(t)− ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1

e (t) · ¯̄C(t) · ¯̄P e(t) + ¯̄Qe(t)

with ¯̄P e(t0) = ¯̄P e0
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and minimizes the error covariance

E

{(
x̄(t)− x̄e(t)

)
·
(
x̄(t)− x̄e(t)

)T
}

For the controller design, the following performance index is consid-
ered:

J(x̄(t0), ū(·), t0) = E

{∫ tf

t0

(
ūT(t) · ¯̄R(t) · ū(t) + x̄T(t) · ¯̄Q(t) · x̄(t)

)
dt

}
where the expectation is over x̄(t0) and the processes v̄(·) and w̄(·) on
the interval [t0, tf ].

The state feedback optimal control is then designed based on the LQR
approach as

ū∗(t) = − ¯̄R−1(t) · ¯̄BT(t) · ¯̄P (t) · x̄e(t)

where ¯̄P (t) is symmetric and the solution of the following matrix Riccati
equation:

− ˙̄̄
P (t) = ¯̄P (t) · ¯̄A(t) + ¯̄AT(t) · ¯̄P (t)− ¯̄P (t) · ¯̄B(t) · ¯̄R−1(t) · ¯̄BT(t) · ¯̄P (t) + ¯̄Q(t)

with ¯̄P (T ) = ¯̄Q(T )

Note that the estimate ˆ̄x(t) of the true state x̄(t) is used. Again, the
state feedback and estimation can be designed independently due to the
separation principle.

Derivation of LQG Method. The estimation is a minimum
variance estimate, that is, to construct from a measurement of ȳ(t), t0 ≤
t ≤ t1, such that

E

{(
x̄(t1)− x̄e(t1)

)T
·
(
x̄(t1)− x̄e(t1)

)}
is minimum [4]. Since all the random processes and variables are gaus-
sian, and have zero mean, the vector x̄e(t) can be derived by linear
operations on ȳ(t), t0 ≤ t ≤ t1, that is, there exists some matrix function
¯̄M(t; t1), t0 ≤ t ≤ t1, such that

x̄e(t1) =
∫ t1

t0

¯̄MT(t; t1) · ȳ(t) dt

Introduce a new square matrix function of time ¯̄Z(·), of the same row
dimension as x̄(·). This function is defined from ¯̄M(·) via the equation

d

dt
¯̄Z(t) = − ¯̄AT(t) · ¯̄Z(t) + ¯̄CT(t) · ¯̄M(t), ¯̄Z(t1) = ¯̄I
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Furthermore, in the follow,

d

dt

[
¯̄ZT(t) · x̄(t)

]
= ˙̄̄

ZT(t) · x̄(t) + ¯̄ZT(t) · ˙̄x(t)

= − ¯̄ZT · ¯̄A · x̄ + ¯̄MT · ¯̄C · x̄ + ¯̄ZT · ¯̄A · x̄ + ¯̄ZT · v̄
= ¯̄MT · ȳ − ¯̄MT · w̄ + ¯̄ZT · v̄

Integrating this equation from t0 to t1, using the boundary condition on
¯̄Z, leads to

x̄(t1)− ¯̄ZT(t0) · x̄(t0) =
∫ t1

t0

¯̄MT(t) · ȳ(t) dt−
∫ t1

t0

¯̄MT(t) · w̄(t) dt

+
∫ t1

t0

¯̄ZT(t) · v̄(t) dt

or

x̄(t1)−
∫ t1

t0

¯̄MT(t) · ȳ(t) dt = ¯̄ZT(t0) · x̄(t0)−
∫ t1

t0

¯̄MT(t) · w̄(t) dt

+
∫ t1

t0

¯̄ZT(t) · v̄(t) dt

Therefore, the following results

E

{[
x̄(t1)−

∫ t1

t0

¯̄MT(t) · ȳ(t) dt

]
·
[
x̄(t1)−

∫ t1

t0

¯̄MT(t) · ȳ(t) dt

]T
}

= E
{

¯̄ZT(t0) · x̄(t0) · x̄T(t0) · ¯̄Z(t0)
}

+ E

{ ∫ t1

t0

∫ t1

t0

¯̄MT(t) · w̄(t) · w̄T(τ) · ¯̄M(τ) dt dτ

}
+ E

{ ∫ t1

t0

∫ t1

t0

¯̄ZT(t) · v̄(t) · v̄T(τ) · ¯̄Z(τ) dt dτ

}

because of the independence of x̄(t0), w̄(t), v̄(t).
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¯̄Z(·) and ¯̄M(·) are unknown but deterministic. Hence, the three terms
of the above equation are derived as follows, respectively.

(1) = ¯̄ZT(t0) · E
{

x̄(t0) · x̄T(t0)
}
· ¯̄Z(t0)

= ¯̄ZT(t0) · ¯̄P e0 · ¯̄Z(t0)

(2) =
∫ t1

t0

∫ t1

t0

¯̄MT(t) · E
{

w̄(t) · w̄T(τ)
}
· ¯̄M(τ) dt dτ

=
∫ t1

t0

∫ t1

t0

¯̄MT(t) · ¯̄R(t) · δ(t− τ) · ¯̄M(τ) dt dτ

=
∫ t1

t0

¯̄MT(t) · ¯̄R(t) · ¯̄M(t) dt

(3) =
∫ t1

t0

∫ t1

t0

¯̄ZT(t) · E
{

v̄(t) · v̄T(τ)
}
· ¯̄Z(τ) dt dτ

=
∫ t1

t0

∫ t1

t0

¯̄ZT(t) · ¯̄Q(t) · δ(t− τ) · ¯̄Z(τ) dt dτ

=
∫ t1

t0

¯̄ZT(t) · ¯̄Q(t) · ¯̄Z(t) dt

Therefore,

E

{[
x̄(t1)− x̄e(t1)

]
·
[
x̄(t1)− x̄e(t1)

]T
}

= ¯̄ZT(t0) · ¯̄P e0 · ¯̄Z(t0) +
∫ t1

t0

[
¯̄MT(t) · ¯̄R(t) · ¯̄M(t) + ¯̄ZT(t) · ¯̄Q(t) · ¯̄Z(t)

]
dt

Therefore, compared with the LQR method, the optimal solution for ¯̄M
is

¯̄M∗ = ¯̄R−1(t) · ¯̄C(t) · ¯̄P e(t) · ¯̄Z(t)

where ¯̄P e(t) is the solution of the Riccati equation

˙̄̄
P e(t) = ¯̄P e(t) · ¯̄AT(t) + ¯̄A(t) · ¯̄P e(t)− ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1

e (t) · ¯̄C(t) · ¯̄P e(t) + ¯̄Qe(t)

with ¯̄P e(t0) = ¯̄P e0

The estimate is as follows

x̄e(t1) =
∫ t1

t0

¯̄MT(t; t0) · ȳ(t) dt

=
∫ t1

t0

¯̄ZT(t) · ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1
e (t) · ȳ(t) dt
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And,

d

dt1
x̄e(t1) = ¯̄ZT(t1; t1) · ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1

e (t1) · ȳ(t1)

+
∫ t1

t0

(
d

dt1
¯̄ZT(t; t1)

)
· ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1

e (t) · ȳ(t) dt

Because

d

dt1
¯̄Z(t; t1) =

d

dt1
¯̄Z−1(t1; t)

= − ¯̄Z−1(t1; t) ·
{[
− ¯̄AT(t1) + ¯̄CT(t1) · ¯̄R−1

e (t1) · ¯̄C(t1) · ¯̄P e(t1)
]
· ¯̄Z(t1; t)

}
· ¯̄Z−1(t1; t)

= − ¯̄Z(t; t1) ·
[
− ¯̄AT(t1) + ¯̄CT(t1) · ¯̄R−1

e (t1) · ¯̄C(t1) · ¯̄P e(t1)
]

and

d

dt1
¯̄ZT(t; t1) =

[
¯̄A(t1)− ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1

e (t1) · ¯̄C(t1)·
]
· ¯̄ZT(t; t1)

so,

d

dt1
x̄e(t1) = ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1

e (t1) · ȳ(t1)

+
∫ t1

t0

[
¯̄A(t1)− ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1

e (t1) · ¯̄C(t1)·
]

· ¯̄ZT(t; t1) · ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1
e (t) · ȳ(t) dt

= ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1
e (t1) · ȳ(t1)

+
[
¯̄A(t1)− ¯̄P e(t1) · ¯̄CT(t1) · ¯̄R−1

e (t1) · ¯̄C(t1)
]
· x̄e(t1)

Hence, the optimal estimate x̄e(t) of x̄(t) is defined by

d

dt
x̄e(t) = ¯̄A(t) · x̄e(t) + ¯̄L(t) ·

[
¯̄CT(t) · x̄e(t)− ȳ(t)

]
, x̄e(t0) = 0

where ¯̄L(t) = ¯̄P e(t) · ¯̄CT(t) · ¯̄R−1
e (t)

Adaptive Control. If the plant to be controlled is known exactly,
it need design techniques to identify the parameters of physical processes
and control them adaptively. Adaptive control is a technique of applying
some system identification technique to obtain a model of the process and
its environment from input-output experiments and using this method
to design a controller. The parameters of the controller are adjusted
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during the operation of the plant as the amount of data available for
plant identification increases.

One type of adaptive control scheme, called Model Reference Adaptive
Control, is discussed.

The plant is described by:

˙̄xp(t) = ¯̄A · x̄p(t) + ¯̄Y (t) · Θ̄∗

where x̄p is the state of the plant, ¯̄A is a known stable system matrix,
¯̄Y ∈ Rn×r is the matrix function of known state variables, and Θ̄∗ ∈ Rr

is the vector of r unknown constant parameters.
The reference model is described by:

˙̄xm(t) = ¯̄A · x̄m(t) + ¯̄Y (t) · Θ̄(t)

where x̄m is the state of the reference model, Θ̄ ∈ Rr is the estimate of
Θ̄∗.

Define

ē(t) = x̄p(t)− x̄m(t)
Φ̄(t) = Θ̄(t)− Θ̄∗

and design the update law for the estimate of the unknown parameters
as:

˙̄Φ(t) = −¯̄Γ · ¯̄Y T(t) · ē(t)

where ¯̄Γ is a weighting matrix and is assumed to be invertible. Therefore,
it can be shown that the error ē(t) = x̄p(t) − x̄m(t) → 0 as t → ∞.
Moreover, under additional conditions, Θ̄(t) → Θ̄∗ as t →∞.

A Scalar Example of MRAC. The plant is described by [2]:

ẋp(t) = ap · xp(t) + kp · u(t)

where xp is the state of the plant, up is the input of the plant, and ap, kp

are unknown constants.
The reference model is described by:

ẋm(t) = am · xm(t) + km · r(t)
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where xm is the state of the reference model, r is the reference trajectory
to both the plant and model, am, km are known parameters, specified by
the designer.

Define:

θ∗1 =
km

kp

θ∗2 =
am − ap

kp
,

and an ideal controller is designed as follows:

u(t) = θ∗1 · r(t) + θ∗2 · xp(t).

Since ap, kp are unknown, θ∗1, θ
∗
2 cannot be computed directly. How-

ever, a set of update laws used to identify these two parameters can be
designed as follows:

θ̇1(t) = −γ · (xp(t)− xm(t)) · r(t)
θ̇2(t) = −γ · (xp(t)− xm(t)) · xp(t)

where γ is any positive constant. Hence, the actual controller applied
the plant is:

u(t) = θ1(t) · r(t) + θ2(t) · xp(t)

The schematic diagram is shown in Figure 1.7. It can be further proved
that the error between xp(t) and xm(t) will approach zero as t → ∞.
However, whether θ1, θ2 will aymptotically identify the true values of
θ∗1, θ

∗
2 cannot be guaranteed by the above design. If the reference tra-

jectory r(t) is persistently excting, the difference (θi(t) − θ∗i ) → 0, as
t →∞.

Robust Control. System parameters are unknown, but the bounds
of the parameters are known.

For example,

˙̄x(t) = ( ¯̄A + ∆¯̄A) · x̄(t) + ¯̄B · ū

where ∆¯̄A represents the uncertain part of the system matrix and its
matrix norm is assumed to bounded by a constant number, i.e., ||∆¯̄A|| <
γ.

Therefore, when designing a state feedback controller, the uncertainty
magnitude γ should be considered.
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Figure 1.7. Example of model reference adaptive control.

For example, if a state feedback law is considered:

ū(t) = g(t, γ, r̄, x̄) = r̄ − ¯̄K · x̄(t)

then, the state feedback gain matrix ¯̄K should be designed, such that
the closed-loop system, including the uncertainty, is stable. That is, all
the eigenvalues of ( ¯̄A+∆¯̄A− ¯̄B · ¯̄K) have negative real part for all possible
situation on ∆¯̄A.

One example of robust control is shown in Figure 1.8, where Π is
the plant dynamics with other uncertainties and K is the controller [7].
There are mainly three types of uncertainties.

The first one is the additive uncertainty, that is, Π = P +∆, as shown
in Figure 1.9.

The second one is the multiplicative uncertainty which could be post-
or pre-multicative, that is, Π = P · (I + ∆)P or Π = (I + ∆) · P . as
shown in Figures 1.11 and ??, respectively.

The third one is the coprime factor uncertainty that is, Π = (M +
∆M )−1 · (N +∆N ) (left coprime factor), or Π = (N +∆N ) · (M +∆M )−1

(right coprime factor) with P = M−1 ·N . Figure 1.12 shows the case of
the left coprime factor uncertainty.
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Figure 1.8. Example of robust control.

Figure 1.9. Example of robust control: Additive uncertainty, i.e., Π = P + ∆.

Figure 1.10. Example of robust control: Post-multiplicative uncertainty, i.e., Π =
P · (I + ∆).
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