Control System: Homework 05 for Units 4C, 4D, 4E: Feedback Analysis
Assigned: October 29, 2021
Due: “NFHAZ
1. (U4C: Three terms controller)

4.34 Consider the satellite-attitude control problem shown in Fig. 4.45 where the
normalized parameters are

J =10 spacecraft inertia, N-m-sec? /rad
6, = reference satellite attitude, rad.

6 = actual satellite attitude, rad.
Hy =1 sensor scale, factor V/rad.
H, =1 reference sensor scale factor, V/rad.

w = disturbance torque, N-m.

(a) Use proportional control, P, with D.(s) = kp, and give the range of values
for kp for which the system will be stable.

(b) Use PD control, let D.(s) = (kp + kps). and determine the system type
and error constant with respect to reference inputs.

(c) Use PD control, let Do(s) = (kp + kps), and determine the system type
and error constant with respect to disturbance inputs.

(d) Use Pl control, let D (s) = (kp + %). and determine the system type and
error constant with respect to reference inputs.

(e) Use Pl control, let D.(s) = (kp + %-), and determine the system type and
error constant with respect to disturbance inputs.

(f) Use PID control, let D.(s) = (kp + %'— + kps). and determine the system
type and error constant with respect to reference inputs.

Figure 4.45: Satellite attitude control



Solution:

(a) D.(s) = kp; The characteristic equation is
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so that no additional damping is provided. The

system cannot be made stable with proportional control alone.

(b) Steady-state error to reference steps.
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The parameters can be selected to make the (closed-loop) system

stable. If ©,(s) = ! then using the FVT (assuming the system is
s

stable)
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and there is zero steady-state error if H, = H, (i.e., unity feedback).

(c) Steady-state error to disturbance steps
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If W(s) = 3 then using the FVT (assuming system is stable), the
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(d) The characteristic equation is

error is f,, = —
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With PI control,
Js® + Hykps + Hykr = 0.
From the Hurwitz’s test, with the s? term missing the system will

always have (at least) one pole not in the LHP. Hence, this is not a
good control strategy.

(e) See (d) above.



(f) The characteristic equation with PID control is
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or

Js + Hykps® + Hykps + Hykr = 0.

There is now control over all the three poles and the system can be
made stable.
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If ©,.(s) = B then using the FVT (assuming system is stable)
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and there is zero steady-state ervor if H, = H, (i.e., unity feedback).
In that case, the system is Type 3 and the (Jerk!) error constant is
ky
Kj=—.
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2. (U4D: Three terms controller and Ziegler—Nichols Tuning)
4.37 A paper machine has the transfer function

-25

G(s) = ,
() s+ 1

where the input is stock flow onto the wire and the output is basis weight or

thickness.

(a) Find the PID-controller parameters using the Ziegler—Nichols tuning
rules.

(b) The system becomes marginally stable for a proportional gain of K;, =
3.044 as shown by the unitimpulse response in Fig. 4.48. Find the optimal
PID-controller parameters according to the Ziegler-Nichols tuning rules.
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Figure 4.48: Unit impulse response for paper-machine in Problem 4.37

Solution:

(a) From the transfer function: L =74 ~ 2 sec

R = % ~0.33 sec '
From Table 4.1:
1
Controller Gain P : K= ﬂlﬁ,
. . L
PI: K=2%=13 T;= o3 = 666,
PID: K= % =18 Ty=2L=4Tp=0.5L=1.0.

(b) From the impulse response: P, = 7 sec From Table 4.2:

Controller Gain P : K =05K, = 1.52,
1
PI K =045K, =137 T; = ﬁPu = 5.83,
1 1
PID K =06K, =182 T;= EPU =3.5Tp = EP“ = (0.875.



3. (U4E: Feedforward Control)

4.38 Consider the DC motor speed-control system shown in Fig. 4.49 with pro-
portional control. (a) Add feedforward control to eliminate the steady-state
tracking error for a step reference input. (b) Also add feedforward control to
eliminate the effect of a constant output disturbance signal, w, on the output
of the system.
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Figure 4.49: Block diagram for Problem 4.38

Solution: (a) In this case the plant inverse DC gain is G~1(0) = 13522 =
0.2551. We implement the closed-loop system as shown in Figure 4.22 (a)

with D.(s) = k, = 3. The closed-loop transfer function is

Y(s) = G(s)lkpE(s) + G (0)R(s)],

E(s) = R(s)—Y(s),
() - G0+
R(s) o 1+ kyG(s)

Note that the closed-loop DC gain is unity (7(0) = 1). The following
figure illustrates the effect of feedforward control in eliminating the steady-
state tracking error. The addition of feedforward control results in zero
steady-state tracking error for a step reference input.
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(b) Similarly, we implement the closed loop system as shown Figure 4.22
(b). The closed-loop transfer function is

Y(s) = W(s)+Gs)kyE(s) — G (O)W(s)),
B(a) = R —Y(E)=0—Y(5),

Y(s) _1-G(0)G(s)

W(s) Tu(s) = L+ k,G(s)

Note that the closed-loop DC gain is zero (7;,(s) = 0). The following figure
illustrates the effect of feedforward control in eliminating the steady-state
error for a step output disturbance.
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MATLAB code:

%FPET7e Problem 3.38

clf;

% Tracking

s=tf(’s");

% plant
G=59.202/(s"2+6.978*s+15.123);
kp=3;

% Closed-loop Transfer function
decgainl=dcgain(G);
T1=G*(1/dcgainl+kp)/(1+kp*G);
t=0:.01:5;

% Step response

yl=step(T1,t);

figure()

plot(t,yl);

xlabel("Time (sec)’);
ylabel("$y(t)$', 'interpreter’,’latex’);
nicegrid;

% Disturbance rejection

kp=3;
Twl=(1-1/dcgain1*G)/(1+kp*G);
ywl=step(Twl,t);

figure()

plot(t,ywl);

xlabel("Time (sec)’);
ylabel("$y(t)$’, "interpreter’,’latex’);

nicegrid;



