Fall 2021 (110-1)

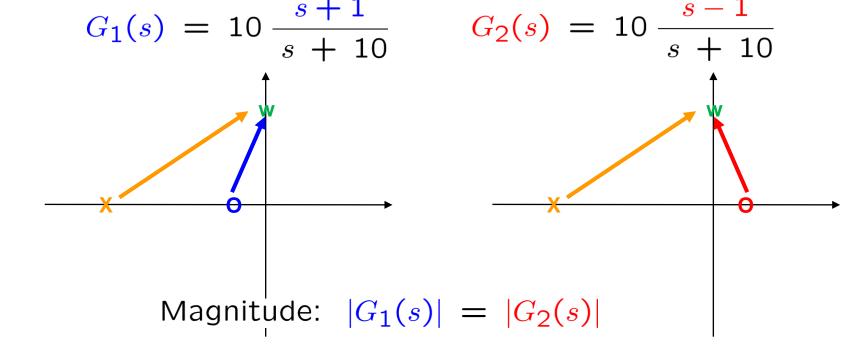
控制系統 Control Systems

Unit 6C Non-Minimum Phase and Steady-State Errors

> Feng-Li Lian NTU-EE Sep 2021 – Jan 2022

NI. NATALANA

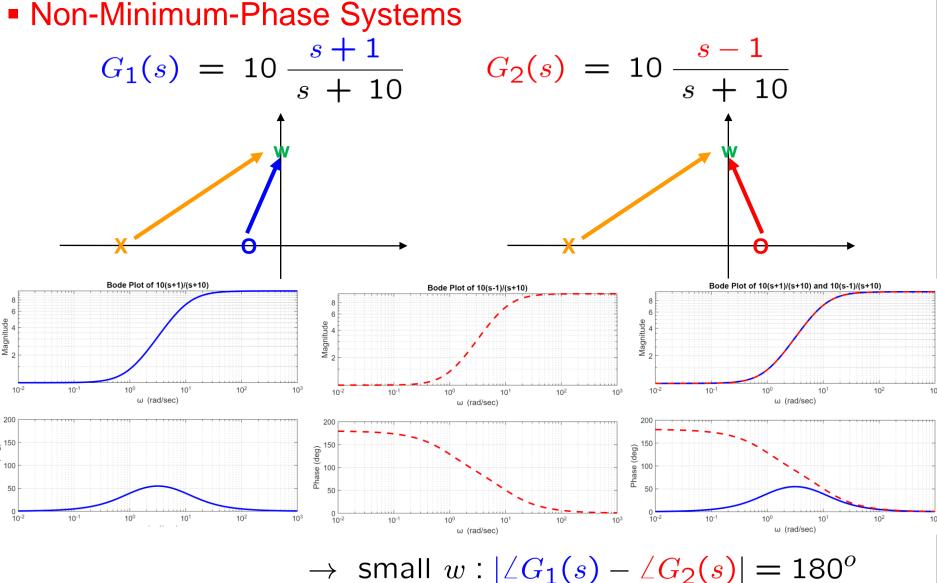
Non-Minimum-Phase Systems



Phase: $\angle G_1(s), \angle G_2(s)$: different

For this example,

$$ightarrow$$
 small $w: |\angle G_1(s) - \angle G_2(s)| = 180^o$
ightarrow large $w: |\angle G_1(s) - \angle G_2(s)| = 0^o$



$$\rightarrow$$
 large $w: | \angle G_1(s) - \angle G_2(s) | = 0^o$

In Section 4.2,

Type Input	Step (position)	Ramp (velocity)	Parabola (acceleration)
Type 0	$\frac{1}{1+K_p}$	∞	∞
Type 1	0	$\frac{1}{K_{V}}$	∞
Type 2	0	0	$\frac{1}{K_a}$

Errors as a Function of System Type

- As the gain of the open-loop transfer function increases,
- Steady-State Error of a feedback system decreases.
- In Section 6.1.1, $KG(jw) = K_0 (jw)^n \frac{(jw\tau_1 + 1)(jw\tau_2 + 1)\cdots}{(jw\tau_a + 1)(jw\tau_b + 1)\cdots}$
 - At very low frequencies, OL TF is approximated by

$$K G(jw) \approx K_0 (jw)^n$$

- Larger the magnitude on low-frequency asymptote,
- Lower steady-state errors

Steady-State Errors

$$K G(jw) \approx K_0 (jw)^n$$

For n = 0, a Type 0 system,

$$e_{ss} = \frac{1}{1 + K_p}$$

Errors as a Function of System Type

 Type Input
 Step (position)
 Ramp (velocity)
 Parabola (acceleration)

 Type 0

$$\frac{1}{1+K_p}$$
 ∞
 ∞

 Type 1
 0
 $\frac{1}{K_v}$
 ∞

 Type 2
 0
 0
 $\frac{1}{K_a}$

- For n = -1, a Type 1 system,
 - The low-frequency asymptote has a slope of -1.
 - The gain = K_o/ω and the velocity-error constant is:

$$K_v = K_o$$

- For a unity-feedback system with a unit-ramp input,
- The steady-state error is:

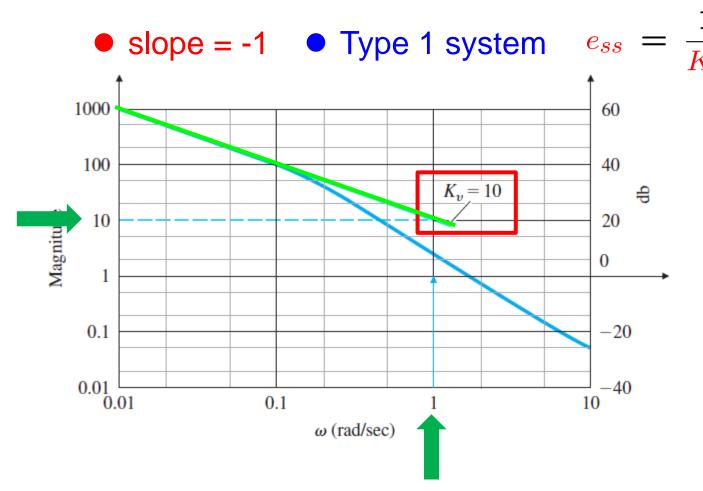
$$= \frac{1}{K_v}$$

- The easiest way of determining K_v in a Type 1 system
- is to read the magnitude of the low-frequency asymptote at $\omega = 1$ rad/sec,
- because this asymptote is $A(\omega) = K_v / \omega$.

- In some cases, the lowest-frequency break point
 will be below ω = 1 rad/sec;
- Therefore, the asymptote needs to extend to $\omega = 1$ rad/sec in order to read K_v directly.

Example 6.7: Computation of K_v

$$KG(s) = \frac{10}{s(s+1)}$$



• Or, by $A(\omega) = K_v / \omega \rightarrow 1000 = K_v / 0.01 \rightarrow K_v = 10$