Fall 2021 （110－1）

控制系統
 Control Systems

Unit 5F
 Extensions of the Root－Locus Method

Feng－Li Lian
NTU－EE
Sep 2021 －Jan 2022

- Positive (180) Root Locus VS Negative (0°) Root Locus
- One Parameter VS Two Parameters
- For negative values of parameters
- Has a zero in the RHP (non-minimum phase)

$$
\begin{gathered}
\Rightarrow 1+A\left(z_{i}-s\right) G^{\prime}(s)=0 \\
\Rightarrow 1+(-A)\left(s-z_{i}\right) G^{\prime}(s)=0 \\
\Rightarrow 1+K\left(s-z_{i}\right) G^{\prime}(s)=0 \\
\Rightarrow K=-A<=0
\end{gathered}
$$

- For negative locus, the phase condition is:
- The angle of $\mathrm{L}(\mathrm{s})$ is $0^{\circ}+360^{\circ}(/-1)$ for s on the negative locus
- Hence, a Negative Locus is referred as a $0{ }^{\circ}$ Root Locus
- Rule 1: (as before)
- The n branches of the locus leave the poles of $L(s)$ and
- m of these branches approach the zeros of $L(s)$ and
- n - m branches approach the asymptotes.
- Rule 2: (odd \rightarrow even)
- The locus is on the real axis to the left of an even number of real poles and zeros.
- Rule 3: $\left(180^{\circ} \rightarrow 0^{\circ}\right)$
- The asymptotes are described by:

$$
\begin{aligned}
\phi_{l} & =\frac{0^{o}+360^{\circ}(l-1)}{n-m} \quad l=1,2, \cdots, n-m \\
\alpha & =\frac{\sum p_{i}-\sum z_{i}}{n-m}=\frac{-a_{1}+b_{1}}{n-m}
\end{aligned}
$$

- Rule 4: $\left(180^{\circ} \rightarrow 0^{\circ}\right)$
- The angle of departure of a branch of the locus from repeated poles with multiplicity q is given by

$$
\begin{aligned}
q \phi_{l, d e p}=\sum \psi_{i}-\sum_{i \neq l, d e p} \phi_{i}-0^{o}-360^{\circ}(l-1) \\
\quad l=1,2, \cdots, q
\end{aligned}
$$

- The angle of arrival of a branch at a zero with multiplicity q is given by

$$
q \psi_{l, a r r}=\sum \phi_{i}-\sum_{i \neq l, a r r} \psi_{i}+0^{\circ}+360^{\circ}(l-1)
$$

- Rule 5:
- The locus can have multiple roots at points on the locus and the branches will approach a point of q roots at angles separated by $\frac{180^{\circ}-360^{\circ}(l-1)}{q}$
- And will depart at angles with same separation.
- Example 5.13: Negative Root Locus for Airplane

$$
\begin{aligned}
G(s) & =\frac{6-s}{s\left(s^{2}+4 s+13\right)} \\
& =-\frac{s-6}{s\left(s^{2}+4 s+13\right)} \\
\Rightarrow 1 & +K \frac{s-6}{s\left(s^{2}+4 s+13\right)}=0
\end{aligned}
$$

- Rule 1 :
- There are 3 branches and 2 asymptotes.
- Rule 2:
- One real-axis segment to the right of $s=6$ and
- A segment is to the left of $s=0$.
- Example 5.13: Negative Root Locus for Airplane
- Rule 3:
- The angles of asymptotes

$$
\begin{aligned}
& \phi_{l}=\frac{360^{\circ}(l-1)}{3-1}=0^{\circ}, 180^{\circ} \\
& \alpha=\frac{-2-2-(6)}{3-1}=-5
\end{aligned}
$$

- Rule 4:

- Departs at $s=-2+j 3$ at

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{3}{-8}\right)-\tan ^{-1}\left(\frac{3}{-2}\right)-90^{\circ}+360^{\circ}(l-1) \\
& =159.4^{\circ}-123.7^{\circ}-90^{\circ}+360^{\circ}(l-1) \\
& =-54.3^{\circ}
\end{aligned}
$$

- Example 5.14: Root Locus Using 2 Parameters in Succession

Root Locus vs. $\mathrm{K}_{\mathrm{T}}\left(\mathrm{K}_{\mathrm{T}}=1\right)$
$\Rightarrow 1+\frac{K_{A}}{s(s+1)}+\frac{K_{T}}{(s+1)}=0$
$\Rightarrow s^{2}+s+K_{A}+K_{T} s=0$
\Rightarrow with $K_{A}=4$
$\Rightarrow 1+K_{T} \frac{s}{s^{2}+s+4}=0$
$\Rightarrow 1+K L(s)=0$

- Example 5.14: Root Locus Using 2 Parameters in Succession

$$
\Rightarrow K_{T}=1
$$

$$
\Rightarrow K_{A}=4+K_{1}
$$

$$
\Rightarrow 1+K_{1} \frac{1}{s^{2}+2 s+4}=0 \quad \Rightarrow 1+K_{T} \frac{s}{s^{2}+s+4}=0
$$

Root Locus vs. $K_{1}\left(K_{A}=K_{1}+4\right)$

- Example 5.14: Root Locus Using 2 Parameters in Succession

$$
\begin{aligned}
\Rightarrow 1 & +K_{T} \frac{s}{s^{2}+s+4}=0
\end{aligned} \quad \Rightarrow 1+K_{1} \frac{1}{s^{2}+2 s+4}=0
$$

- Example 5.14: Root Locus Using 2 Parameters in Succession

$$
\begin{gathered}
\Rightarrow 1+K_{T} \frac{s}{s^{2}+s+1}=0 \\
\Rightarrow K_{T}=1,2,3 \\
\Rightarrow K_{A}=1+K_{1} \\
\Rightarrow 1+K_{T} \frac{s}{s^{2}+s+\sqrt{4}}=0 \\
\Rightarrow K_{T}=1,2,3 \\
\Rightarrow K_{A}=4+K_{1} \\
\Rightarrow 1+K_{T} \frac{s}{s^{2}+s+7}=0 \\
\Rightarrow K_{T}=1,2,3 \\
\Rightarrow K_{A}=7+K_{1}
\end{gathered}
$$

