Fall 2021 (110-1)

控制系統 Control Systems

Unit 5D Design Using Dynamic Compensation

Feng-Li Lian NTU-EE Sep 2021 – Jan 2022

- Three categories of Particularly Simple and Effective Designs:
- Lead Compensation:
 - Approximates the function of PD control and
 - Acts mainly to speed up a response
 by lowering rise time and decreasing the transient overshoot
- Lag Compensation:
 - Approximates the function of PI control and
 - Is usually used to improve the steady-state accuracy

- Notch Compensation:
 - To achieve stability for systems with lightly damped flexible modes

Plant

G(s)

Model:

$$D_c(s) = K \frac{s+z}{s+p}$$

$$\Rightarrow 1 + D_c(s) G(s) = 0$$

$$\Rightarrow 1 + K L(s) = 0$$

- Lead Compensation: if z < p</p>
 - Provides a positive phase shift

Provides a negative phase shift

Lag Compensation:

Controller

 $D_c(s)$

Lead_

U

- 2nd Order Desition Control C

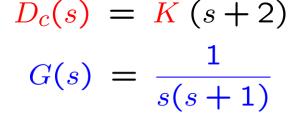
2nd-Order Position Control System

$$D_c(s) = K$$

$$G(s) = \frac{1}{s(s+1)}$$

$$\Rightarrow 1 + K \frac{1}{s(s+1)} = 0$$

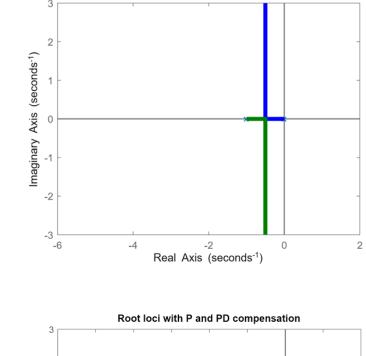
$$\Rightarrow s(s+1) + K = 0$$



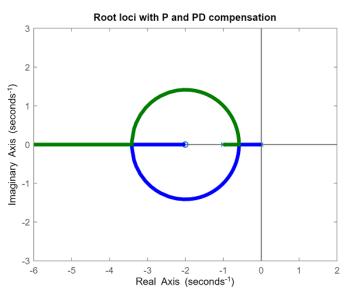
$$\frac{G(s)}{s(s+1)}$$

$$\Rightarrow 1 + K(s+2) \frac{1}{s(s+1)} = 0$$

$$\Rightarrow s(s+1) + K(s+2) = 0$$



Root loci with P and PD compensation



Design Using Lead Compensation

Feng-Li Lian © 2021 Root locus with PD or lead compensation

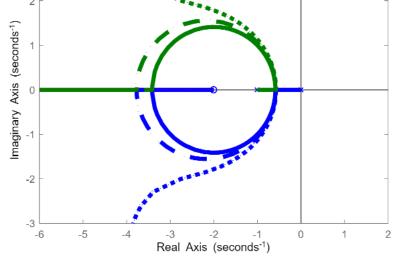
CS5D-DynComp - 5

■ 2nd-Order Position Control System
$$D_s(s) = \frac{s+2}{k}$$

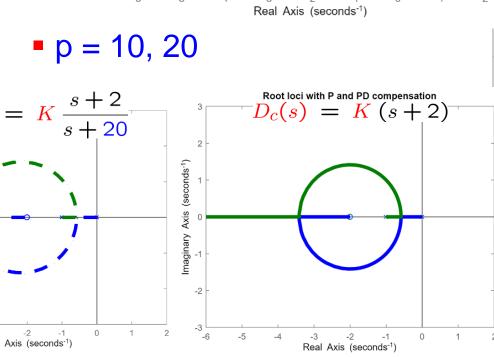
$$D_c(s) = K \frac{s+2}{s+p}$$

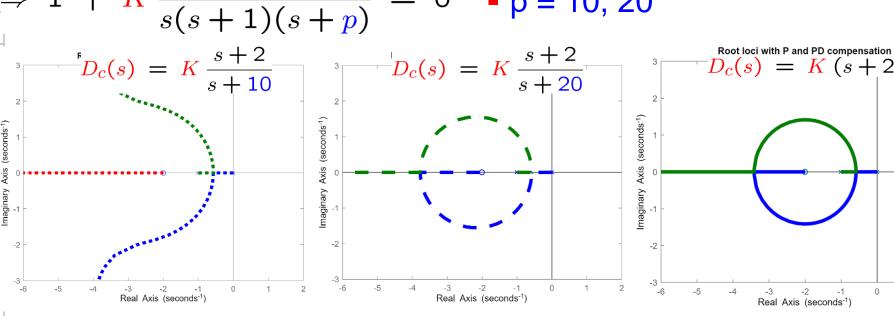
$$G(s) = \frac{1}{s(s+1)}$$

$$\Rightarrow 1 + K \frac{s+2}{s+p} \frac{1}{s(s+1)} = 0$$



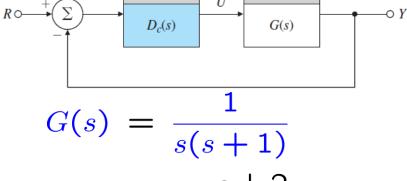
$$\Rightarrow 1 + \frac{K}{s(s+1)(s+p)} = 0$$

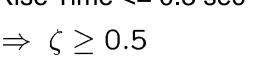




Design Using Lead Compensation Example 5.11: Design Using Lead Compensation

Plant





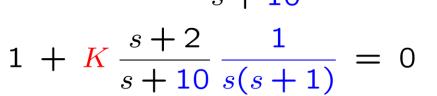
CS5D-DynComp - 6

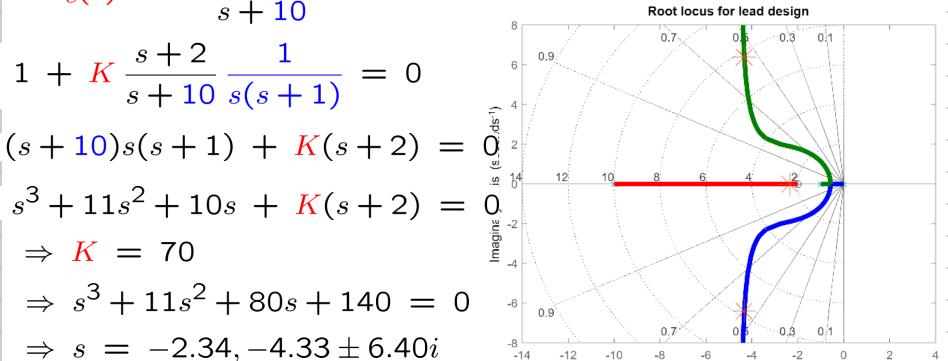
Feng-Li Lian © 2021

$$\Rightarrow w_n \approx \frac{1.8}{0.3} \approx 6 \Rightarrow w_n \ge 7$$

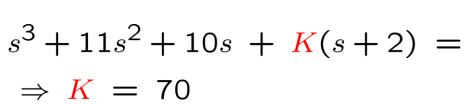
$$D_c(s) = K \frac{s+2}{s+10}$$
$$s+2 \qquad 1$$

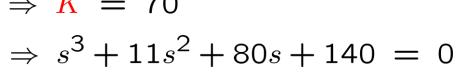
Controller





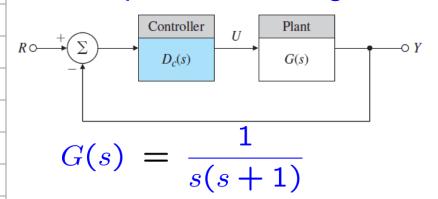
Real Axis (seconds⁻¹)



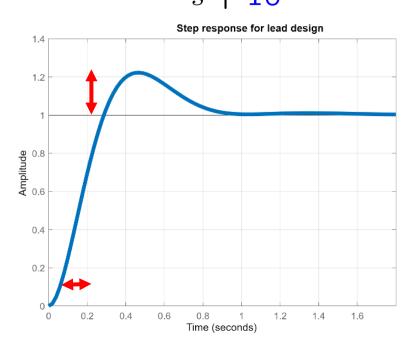


 $\Rightarrow s = -2.34, -4.33 \pm 6.40i$

Example 5.11: Design Using Lead Compensation



$$D_c(s) = 70 \frac{s+2}{s+10}$$

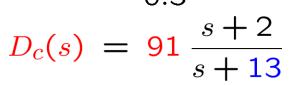


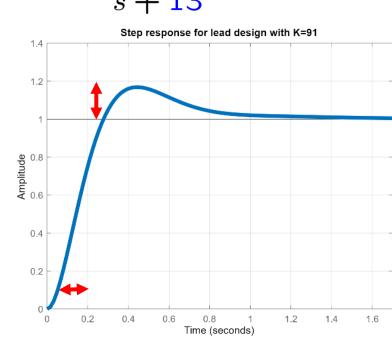
- Overshoot <= 20%
- Rise Time <= 0.3 sec

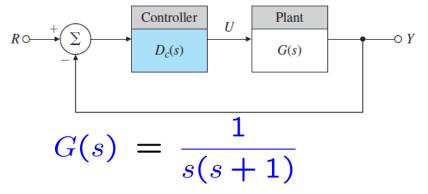
$$\Rightarrow \zeta \geq 0.5$$

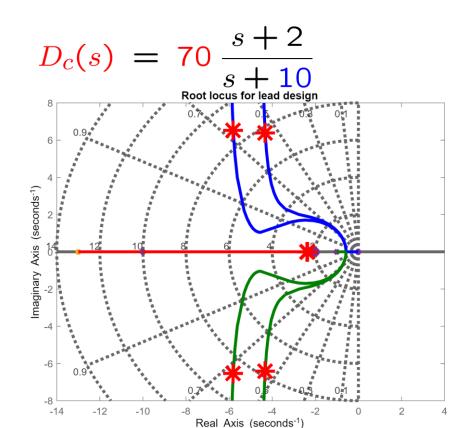
$$\Rightarrow w_n \approx \frac{1.8}{0.3} \approx 6 \quad \Rightarrow w_n \ge 7$$

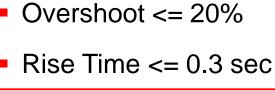
$$s + 2$$

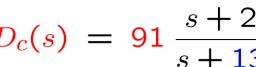


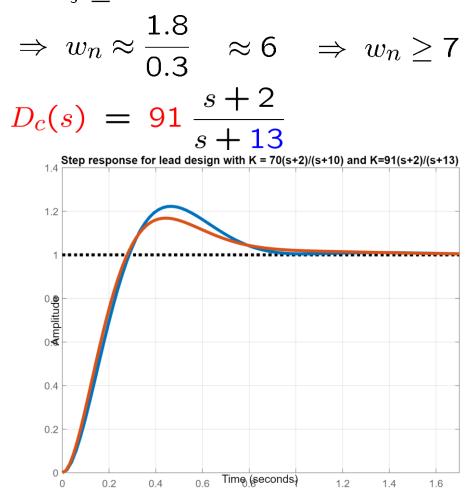












2nd-Order Position Control System

$$G(s) = \frac{1}{s(s+1)}$$

$$G(s) = \frac{1}{s(s+1)}$$

$$G(s) = \frac{1}{s(s+1)}$$

 $D_{c2}(s) = \frac{s + 0.05}{s + 0.01}$

IF $K_v = 70 \, \text{sec}^{-1}$ Reduce the velocity error

by a factor of 5

$$\Rightarrow \frac{z}{p} = 5$$

$$\Rightarrow z = 0.05$$

$$\Rightarrow p = 0.01$$

$$D_c(s) = \frac{s+z}{s+p}, \quad z > p$$

$$D_c(0) = \frac{z}{p} = 3 \text{ to } 10$$

Lead Compensation:

 $KD_{c1}(s) = 91\frac{s+2}{s+13}$

14

 $= \lim_{s \to 0} s (91) \frac{s+2}{s+13} \frac{1}{s(s+1)}$

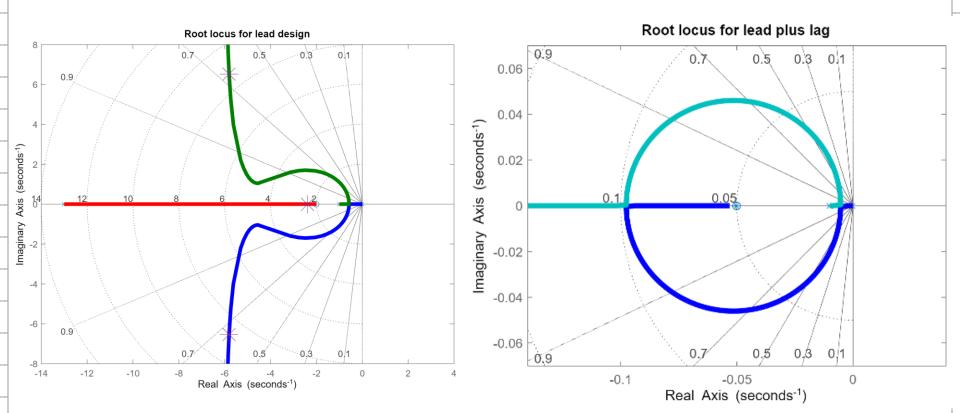
 $K_v = \lim_{s \to 0} s K D_{c1}(s) G(s)$

2nd-Order Position Control System

$$G(s) = \frac{1}{s(s+1)}$$

$$KD_{c1}(s) = 91\frac{s+2}{s+13}$$

$$KD_{c2}(s) = 91 \frac{s + 0.05}{s + 0.01}$$



Suppose the design with lead and lag compensation

$$KD_c(s) = 91 \frac{s+2}{s+13} \frac{s+0.05}{s+0.01}$$

Has a substantial oscillation at about 50 rad/sec

$$G(s) = \frac{2500}{s(s+1)(s^2+s+2500)}$$

Notch Compensation (Phase Stabilization)

$$D_{notch}(s) = \frac{s^2 + 2\zeta w_0 s + w_0^2}{(s + w_0)^2}$$

$$=\frac{s^2+0.8s+3600}{(s+60)^2}$$

Suppose the design with lead and lag compensation

