Fall 2021 (110-1)

控制系統 Control Systems

Unit 2E Electric Circuits

Feng-Li Lian NTU-EE Sep 2021 – Jan 2022 The basic equations

of electric circuits are the Kirchhoff's laws

Kirchhoff's Current Law (KCL):

The algebraic sum of the currents leaving a node

The algebraic sum of the currents entering that node

Kirchhoff's Voltage Law (KVL):

The algebraic sum of all voltages

taken around a closed path in a circuit is zero

v = Ri

Equation

Symbol

Capacitor

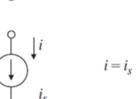
Voltage source

Current

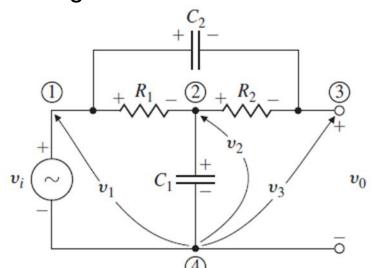
source

 $v = \int_{-\infty}^{\infty} i dt$ $= C \frac{dv}{dt}$

Inductor $v = L \frac{di}{dt}$



Bridged Tee Circuit

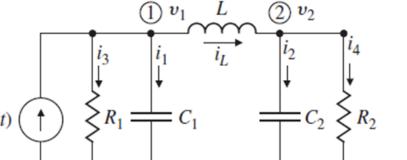


- Model (Equations of Motion)
- Select node 4 as the reference
 - v_1, v_2, v_3 as the unknowns
 - By KVL, $v_1 = v_i$

At node 2, the KCL is
$$-\frac{v_1 - v_2}{R_1} + \frac{v_2 - v_3}{R_2} + C_1 \frac{dv_2}{dt} = 0$$

- At node 3, the KCL is $\frac{v_3-v_2}{R_2} + C_2 \frac{d(v_3-v_1)}{dt} = 0$
- Transfer function from input v_i to output v_o can be derived

Circuit with a current source



- Select node 4 as the reference
 - v_1, v_2, i_L as the unknowns

 $i(t) = \frac{v_1}{R_1} + C_1 \frac{dv_1}{dt} + i_L,$

- At node 1, the KCL is $i(t) = i_3 + i_1 + i_L$
- At node 2, the KCL is $i_L = i_2 + i_4$

$$i_3 = \frac{v_1}{R_1}, \ i_1 = C_1 \frac{dv_1}{dt},$$

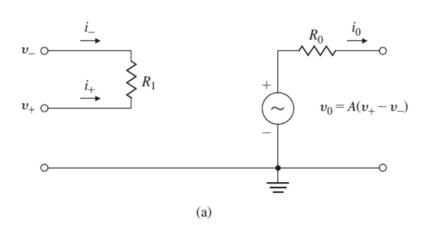
$$i_{2} = C_{2} \frac{dv_{2}}{dt}, \ i_{4} = \frac{v_{2}}{R_{2}},$$

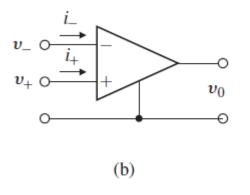
$$i_{L} = C_{2} \frac{dv_{2}}{dt} + \frac{v_{2}}{R_{2}}$$

(4) v = 0

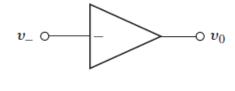
$$v_1 - v_2 = L\frac{di_L}{dt}, \qquad v_1 = L\frac{di_L}{dt} + v_2$$

Simplified circuit of op-amp





 $v_{+} = 0$ Assume connected to ground,



(c)

Assume ideal op-amp, $R_1 = \infty$, $R_0 = 0$, $A = \infty$

$$-v_{-}=0$$

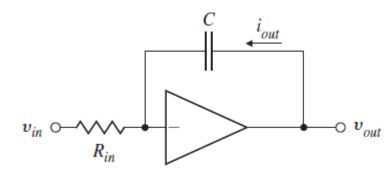
The op-amp summer



- From $v_+ v_- = 0$, we have $v_- = 0$
- Thus, $i_1 = \frac{v_1}{R_1}$, $i_2 = \frac{v_2}{R_2}$, $i_{out} = \frac{v_{out}}{R_f}$
- From $i_{+} = i_{-} = 0$, we have $i_{1} + i_{2} + i_{out} = 0$, $\frac{v_{1}}{R_{1}} + \frac{v_{2}}{R_{2}} + \frac{v_{out}}{R_{f}} = 0$
- Model (Equations of Motion)

$$v_{out} = -\left[\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2\right]$$
 (Output is the weighted sum of input voltages)

The op-amp integrator



$$i_{in} + i_{out} = 0$$

$$\frac{v_{in}}{R_{in}} + C\frac{dv_{out}}{dt} = 0$$

$$v_{out} = -\frac{1}{R_{in}C} \int_0^t v_{in}(\tau) d\tau + v_{out}(0)$$

$$V_{out}(s) = -\frac{1}{s} \frac{V_{in}(s)}{R_{in}C}$$

 $\frac{in(S)}{S \cdot C}$ (Assume zero initial condition)

Table 2.1 [Dorf & Bishop 2017]

System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y_{21}
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, <i>Q</i>	Volume, V	Pressure difference, P_{21}	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Summary of Governing Differential Equations for Ideal Elements

Translational spring

Rotational spring

Translational mass

Rotational mass

Fluid capacitance

Thermal capacitance

Fluid inertia

CS2E-Electric - 9 Feng-Li Lian © 2021

Table 2.2-1 [Dorf & Bishop 2017]

Type of	Physical	Governing
Element	Element	Equation
	Electrical inductance	$v_{21} = L \frac{di}{dt}$

$$L\frac{di}{dt} \qquad E = \frac{1}{2}Li^2 \qquad v_2 \circ \overbrace{\qquad}^L \stackrel{i}{\longrightarrow} v_1$$

Symbol

$$\frac{1}{2}Li^2$$

$$\frac{1}{2} \frac{F^2}{f}$$

$$v_{21} = \frac{1}{k} \frac{dF}{dt} \qquad E = \frac{1}{2} \frac{F^2}{k} \qquad v_2 \circ \nearrow \searrow \searrow F$$

$$\stackrel{k}{\curvearrowleft}$$

$$\stackrel{k}{\longleftarrow}$$

$$\stackrel{v_1}{\smile}$$

Inductive storage

$$P_{21} = 0$$

$$\omega_{21} = \frac{1}{k} \frac{dT}{dt} \qquad E = \frac{1}{2} \frac{T^2}{k} \qquad \omega_2 \circ \stackrel{k}{\longrightarrow} T$$

$$P_{21} = I \frac{dQ}{dt} \qquad E = \frac{1}{2} I Q^2 \qquad P_2 \circ \stackrel{I}{\longrightarrow} P_1$$

 $T = J \frac{d\omega_2}{dt} \qquad E = \frac{1}{2} J \omega_2^2 \qquad T \xrightarrow{\omega_2} \boxed{J} \xrightarrow{\omega_1} = \frac{1}{2} C_f P_{21}^2 \qquad Q \xrightarrow{P_2} \boxed{C_f} \xrightarrow{Q} P_1$

 $q = C_t \frac{d\mathcal{T}_2}{dt}$ $E = C_t \mathcal{T}_2$ $q \longrightarrow C_t \longrightarrow C_t$

$$Q^2$$

$$P_2 \circ \mathcal{I}$$

Table 2.2-2

$$i = C \frac{dv_{21}}{dt} \qquad E = \frac{1}{2} C v_{21}^2 \qquad v_2 \circ \frac{i}{} \Big| \frac{C}{} \circ v_1$$

e
$$i = C \frac{dv_{21}}{dt}$$
 $E = \frac{1}{2}Cv_{21}^2$ $v_2 \circ \stackrel{i}{\longrightarrow} | \stackrel{C}{\longrightarrow} \circ v_1$

$$F = M \frac{dv_2}{dt} \qquad E = \frac{1}{2}Mv_2^2 \qquad F \stackrel{\circ}{\longrightarrow} \stackrel{\square}{\longleftarrow} \stackrel{\circ}{\longrightarrow} \stackrel{$$

$$v_2 \circ \xrightarrow{i}$$

$$\dashv \vdash^{c}$$

$$\prod^{C}$$

Table 2.2.3 [Dorf & Bishop 2017]

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
Energy dissipators	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathscr{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \longrightarrow \stackrel{R}{\longrightarrow} i \circ v_1$
	Electrical resistance Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \xrightarrow{v_2} b \circ v_1$
	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}^{2}$	$T \xrightarrow{\omega_2} b \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ \hspace{-0.4cm} \stackrel{R_t}{\longleftrightarrow} \hspace{-0.4cm} q \\ \hspace{-0.4cm} \longrightarrow \hspace{-0.4cm} \mathcal{T}_1$