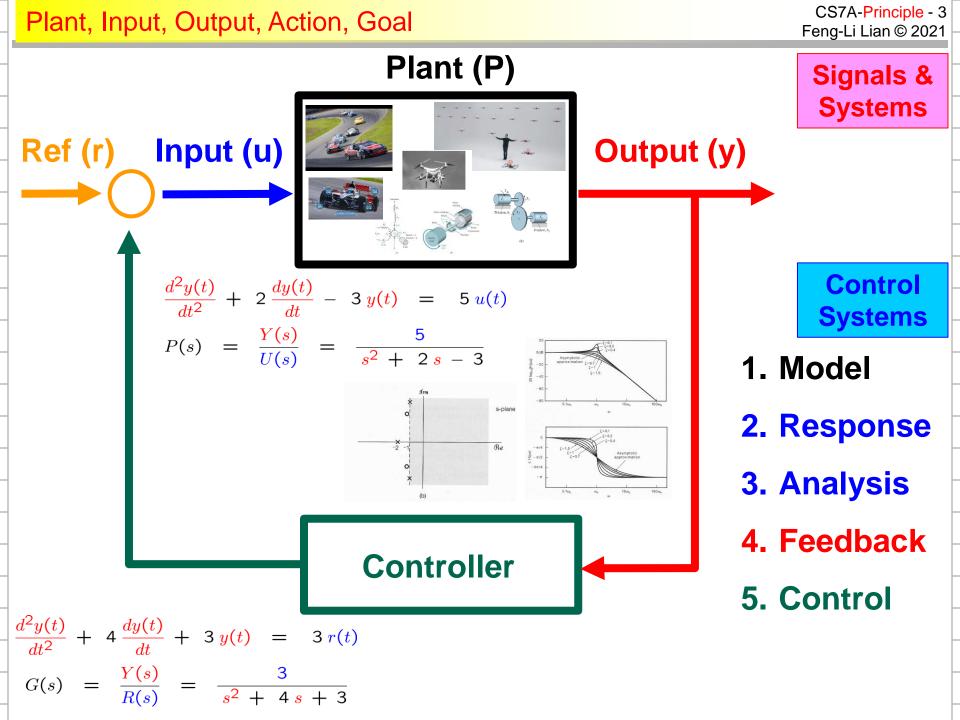
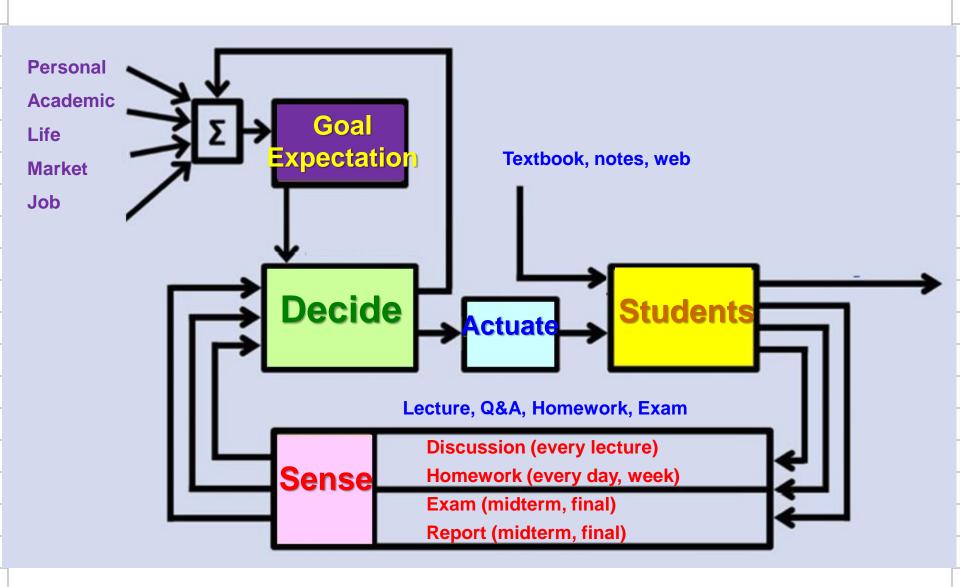
Spring 2021

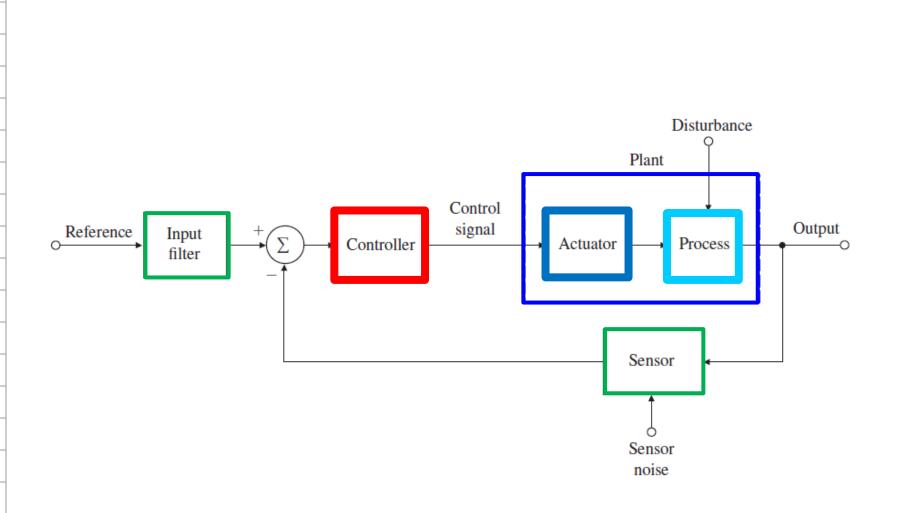
控制系統 Control Systems


Unit 7A Control System Design: Principles


Feng-Li Lian NTU-EE

Feb – Jun, 2021

Control System Design


Examples of Control Systems Design		
 Outline of Control Systems Design 		
 Satellite's Attitude Control 		
 Lateral & Longitudinal Control of Boein 	g	
 Fuel—Air Ratio in an Automotive Engine 		
 Read Write Head of a Hard Disk 		
RTP Systems in Wafer Manufacturing		
Chemotaxis Swims Away from Trouble		
Quadrotor Drone	- C	Control Tutorials Website
		Control Tutorials Website Cruise Control
		Cruise Control
		Cruise ControlMotor Speed
		Cruise ControlMotor SpeedMotor Position
		 Cruise Control Motor Speed Motor Position Suspension



Source : IEEE CSM 2013

Key Terminologies in Feedback and Control

- (Step 1)
- Understand the Process and
- Translate Dynamic Performance Requirements into time, frequency, or pole-zero specifications.
 - Step response inside some constraint boundaries
 - Open-loop frequency response satisfying certain constraints
 - Closed-loop poles to the left of some constraint boundary

- (Step 2)
- Select Sensors

 Select the types and number of sensors considering location, technology

Number of sensors and locations:	Select minimum required number of sensors and their optimal locations	
Technology:	Electric or magnetic, mechanical, electromechanical, electro- optical, piezoelectric	
Functional performance:	Linearity, bias, accuracy, bandwidth, resolution, dynamic range, noise	
Physical properties:	Weight, size, strength	
Quality factors:	Reliability, durability, maintainability	
Cost:	Expense, availability, facilities for testing and maintenance	

- (Step 3)
- Select Actuators
 - The device that influences the response is the actuator
 - Select the types and number of actuators considering location, technology, noise, and power

Number of actuators and locations:	Select minimum required actuators and their optimal locations
Technology:	Electric, hydraulic, pneumatic, thermal, other
Functional performance:	Maximum force possible, extent of the linear range, maximum speed possible, power, efficiency, etc.
Physical properties:	Weight, size, strength
Quality factors:	Reliability, durability, maintainability
Cost:	Expense, availability, facilities for testing and maintenance

• (Step 4)

Construct a Linear Model

- Construct a linear model of the process, actuator, and sensor

- (Step 5)
- Try a simple PID or Lead-Lag design (Proportional-Integral-Derivative)
 - Try a simple trial design based on the concepts of lead-lag compensation or PID control
- (Step 6)
- Evaluate / Verify Plant

Consider modifying the plant itself for improved closed-loop control

(Step 7)

- Try an Optimal Design (State Space design) <Not Included>
 - If the performance from the simple compensator in Step 5 is not adequate,

Perform a trial pole-placement design based on optimal control or other criteria

• (Step 8)

- Build a Computer Model, and Compute (Simulate) the Performance of the Design
 - Simulate the design, including the effects of nonlinearities, noise, and parameter variations.
 - If the performance is not satisfactory, return to Step 1 and repeat.
 - Consider modifying the plant itself for improved closed-loop control
- (Step 9)
- Build a Prototype