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 For most systems, 

an increasing gain eventually causes instability

 In very early days of feedback control design,

this relationship between gain and stability margins 

was assumed to be universal.

 However, designers found occasionally that 

the relationship reversed itself;

 That is, the amplifier would become unstable

when the gain was decreased. 

 The confusion motivated Harry Nyquist of Bell Tele Lab in 1932

 The Nyquist Stability Criterion
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 Nyquist Stability Criterion:

 Based on the Argument Principle in complex variable theory.

 Relate OL frequency response 

to the number of CL poles in the RHP

 Determine stability 

from frequency response of a complex system

 The magnitude curve crosses 1 several times 

and/or the phase curve crosses 180𝑜 several times.

 Deal with (a) OL unstable systems, 

(b) non-minimum-phase systems, 

(c) systems with pure delays
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 The essence of the Argument Principle

 A contour map of a complex function 

will  encircle the origin  Z – P times, 

 where Z is the number of zeros

and P is the number of poles

of the function inside the contour.

 For controller design, 

let the 𝑪𝟏 contour encircle entire RHP,

where a pole would cause an unstable system.
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 CL roots:

 The contour evaluation for

  Encircling the origin!

 Equivalently, the contour evaluation for

  Encircling -1  

 Nyquist Plot

 Polar Plot
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 A clockwise contour 𝑪𝟏 enclosing a zero of 1 + KG(s)

result in KG(s) encircling the -1 point in a clockwise direction 

 Likewise, 𝑪𝟏 enclose a pole of 1 + KG(s)

(if there is an unstable OL pole)

there will be a counterclockwise encirclement of the -1 point. 

 Furthermore, two poles or zeros are in the RHP,

KG(s) will encircle the -1 point twice, and so on.

 Net number of CW encirclements  N   =  Z  - P

Z = zeros in RHP,    P = poles in RHP
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 Example 6.8: Nyquist Plot for a Second-Order System

w = logspace(-2,3,100);

num = 1;

den = [1 2 1];

[re,im] = nyquist( num, den, w );

plot( re, im, re, -im );
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 Example 6.8: Nyquist Plot for a Second-Order System

 N = 0: not encircle -1

 P = 0: no poles of G(s) in RHP

 Z = N + P  Z = 0, 

no unstable roots for K = 1

 K > 0 also holds  
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 Example 6.8: Nyquist Plot for a Second-Order System

 Another viewpoint:

• 1 + KG(s) for the origin point 

• KG(s) for the -1 point

• G(s) for the -1/K point

 No encirclement of G(s) on -1/K

for any K > 0

 Hence, K > 0 is stable
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 Example 6.9: Nyquist Plot for a Third-Order System
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 Example 6.9: Nyquist Plot for a Third-Order System

w=logspace(-2,3,100);

num = 1;

den = conv([1 0],[1 2 1]);

[re,im] = nyquist(num,den,w);

plot(re,im,re,-im,'LineWidth',2);

ii=[11 21 47 61];

plot(re(ii),im(ii),'*');

plot(-.5,0,'*')
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 Example 6.10: Nyquist Plot for an Open-Loop Unstable System
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 Example 6.10: Nyquist Plot for an Open-Loop Unstable System

w = logspace(-3,3,100);

num = [1 1];

den = conv([1 0],[0.1 -1]);

[re,im] = nyquist( num, den, w );

plot( re, im, re, -im );
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 Example 6.11: Nyquist Plot Characteristics

w = logspace(-3,3,100);

num = [1 0 3];

den = conv([1 1],[1 1]);

[re,im] = nyquist( num, den, w );

plot( re, im, re, -im ); 

sysG = (s^2 + 3)/(s+1)^2;

nyquist( sysG );

 Never cross negative-real axis

 Stable for K > 0 


