Spring 2021

控制系統
 Control Systems

Unit 5B
 Guidelines for Determining a Root Locus

Feng－Li Lian NTU－EE

Feb－Jun， 2021

- Definition I:
- The root locus is
the set of values of s

$$
L(s)=\frac{b(s)}{a(s)}
$$

- for which $1+K L(s)=0$ is satisfied
as the real parameter K varies from 0 to $+\infty$
- Typically, $1+K L(s)=0$ is the characteristic equation of the system, and in this case the roots on the locus are the closed-loop poles of that system.
- Definition II:

$$
\Rightarrow L(s)=-\frac{1}{K}
$$

- The root locus of $L(s)$ is the set of points in the s-plane where the phase of $L(s)$ is 180°.
- To test whether a point in the s-plane is on the locus, we define the angle to the test point from a zero as ψ and the angle to test point from a pole as ϕ as follows:

$$
\sum \psi_{i}-\sum \phi_{i}=180^{\circ}+360^{\circ}(l-1)
$$

- K is real and positive, the phase of $L(s)$ is 180°, the positive locus or 180° locus
- K is real and negative,

$$
\Rightarrow L(s)=-\frac{1}{K}
$$

the phase of $L(s)$ is 0°, the negative locus or $0 \cdot$ locus

- Illustrative Example: $L(s)=\frac{s+1}{\left.s(s+5)\left[(s+2)^{2}+4\right)\right]}$

$$
s_{0}=-1+2 j
$$

$\angle L\left(s_{0}\right)=180^{\circ}+360^{\circ}(l-1)$

- Illustrative Example:

$$
L(s)=\frac{s+1}{\left.s(s+5)\left[(s+2)^{2}+4\right)\right]}
$$

$$
s_{0}=-1+2 j
$$

$\angle L\left(s_{0}\right)=180^{\circ}+360^{\circ}(l-1)$

$$
\begin{aligned}
& =\sum \psi_{i}-\sum \phi_{i} \\
& =\angle\left(s_{0}+1\right) \\
& -\angle\left(s_{0}\right)-\angle\left(s_{0}+5\right) \\
& -\angle\left[\left(s_{0}+2\right)^{2}+4\right] \\
& =90^{\circ}-116.6^{\circ}-0^{\circ} \\
& \quad \begin{aligned}
& -76^{\circ}-26.6^{\circ}
\end{aligned}
\end{aligned}
$$

$$
=-129.2^{\circ} \neq 180^{\circ}
$$

$\Rightarrow s_{0}$ is not on the root locus

$$
L(s)=\frac{s+1}{s^{2}+4 s+8}
$$

- Rule 1:

Root Locus vs. K

- The n branches of the locus start at the poles of $L(s)$ and
- m of these branches end on the zeros of $L(s)$.
- $a(s)+K b(s)=0$,
- If $K=0$, then $a(s)=0$, whose roots are the poles.
- When $\mathrm{K} \rightarrow \infty$, then $\mathrm{b}(\mathrm{s})=0$ (m zeros) or $\mathrm{s} \rightarrow \infty$. (the rest $\mathrm{n}-\mathrm{m}$)

$$
L(s)=\frac{s+1}{s^{2}+4 s+8}
$$

- Rule 2:
- The loci are on the real axis to the left
 of an odd number of poles and zeros.

$$
L(s)=\frac{1}{s(s+1)}
$$

- Rule 3:
- For large s and K,
$n-m$ branches of the loci are asymptotic
to lines at angles ϕ radiating out
from the point $s=\alpha$ on the real axis, where

$$
\begin{aligned}
\phi_{l} & =\frac{180^{\circ}+360^{\circ}(l-1)}{n-m} \quad l=1,2, \cdots, n-m \\
\alpha & =\frac{\sum p_{i}-\sum z_{i}}{n-m}
\end{aligned}
$$

Root Locus vs. K

- Rule 3:
- As $K \rightarrow \infty$,

$$
L(s)=-\frac{1}{K}
$$

$$
\Rightarrow L(s)=0
$$

Root Locus vs. K

1) m roots will be found to approach the zeros of $\mathrm{L}(\mathrm{s})$
2) $s \rightarrow \infty$ because $n>=m$
that is,
$n-m$ roots approach $s \rightarrow \infty$
$\Rightarrow 1+K \frac{b(s)}{a(s)}=0$

$\Rightarrow 1+K \frac{s^{m}+b_{1} s^{m-1}+b_{2} s^{m-2}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n-1} s+a_{n}}=0$

- Can be approximated by

$$
\Rightarrow 1+K \frac{1}{(s-\alpha)^{n-m}}=0
$$

- Rule 3:

$$
\Rightarrow 1+K \frac{1}{(s-\alpha)^{n-m}}=0
$$

- The search point: $s_{0}=R e^{j \phi}$

$$
l=1,2, \cdots,(n-m)
$$

$$
\begin{aligned}
(n-m) \phi_{l} & =180^{\circ}+360^{\circ}(l-1) \\
\Rightarrow \phi_{l} & =\frac{180^{\circ}+360^{\circ}(l-1)}{(n-m)}
\end{aligned}
$$

- For this example:

$$
\begin{aligned}
& L(s)=\frac{1}{\left.s\left[(s+4)^{2}+16\right)\right]} \\
& (n-m)=3 \\
& \phi_{1,2,3=}=60^{\circ}, 180^{\circ}, 300^{\circ} \\
& \quad \text { or } \pm 60^{\circ}, 180^{\circ}
\end{aligned}
$$

- Rule 3:
- Determine asymptotic lines:

$$
\begin{aligned}
a(s) & =s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n-1} s+a_{n} \\
& =\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n-1}\right)\left(s-p_{n}\right)
\end{aligned}
$$

$$
\Rightarrow a_{1}=-p_{1}-p_{2} \cdots-p_{n-1}-p_{n} \quad=-\sum p_{i}
$$

$$
b(s)=s^{m}+b_{1} s^{m-1}+b_{2} s^{m-2}+\cdots+b_{m-1} s+b_{m}
$$

$$
=\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m-1}\right)\left(s-z_{m}\right)
$$

$$
\Rightarrow b_{1}=-z_{1}-z_{2} \cdots-z_{n-1}-z_{n} \quad=-\sum z_{i}
$$

- Rule 3:
- Determine asymptotic lines:
$\Rightarrow a(s)+K b(s)=0$
$\Rightarrow s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\cdots+a_{n-1} s+a_{n}$

$$
\begin{aligned}
& +K\left(s^{m}+b_{1} s^{m-1}+b_{2} s^{m-2}+\cdots+b_{m-1} s+b_{m}\right)=0 \\
& =\left(s-r_{1}\right)\left(s-r_{2}\right) \cdots\left(s-r_{n-1}\right)\left(s-r_{n}\right)=0
\end{aligned}
$$

- If $m<n-1$:

$$
\Rightarrow a_{1}=-r_{1}-r_{2} \cdots-r_{n-1}-r_{n} \quad=-\sum r_{i}
$$

- And this term is independent of K
- The open-loop sum and closed-loop sum are the same and are equal to $-a_{1}$

$$
\Rightarrow-\sum r_{i}=-\sum p_{i}
$$

- Rule 3:
- For large values of K :

$$
L(s)=\frac{1}{\left.s\left[(s+4)^{2}+16\right)\right]}
$$

- m of the roots r_{i} approach the zeros z_{i}
- $n-m$ of the roots r_{i} approach the branches of the asymptotic system

$$
\begin{aligned}
& \frac{1}{(s-\alpha)^{n-m}} \quad \text { whose poles add up to }(\mathrm{n}-\mathrm{m}) \alpha \\
\Rightarrow & -\sum r_{i}=-(n-m) \alpha-\sum z_{i}=-\sum p_{i}
\end{aligned}
$$

$$
\Rightarrow \alpha=\frac{\sum p_{i}-\sum z_{i}}{(n-m)}
$$

- For this example:

$$
\begin{aligned}
\Rightarrow \alpha & =\frac{-4-4+0}{3-0} \\
& =-\frac{8}{3}=-2.67 \\
\phi_{1,2,3} & = \pm 60^{\circ}, 180^{\circ}
\end{aligned}
$$

- Rule 4:
- The angle of departure of a branch of the locus from a single pole is given by

$$
\phi_{d e p}=\sum \psi_{i}-\sum_{i \neq d e p} \phi_{i}-180^{\circ}
$$

$\sum \phi_{i}$ the sum of the angles to the remaining poles $\sum \psi_{i}$ the sum of the angles to all the zeros

- The angle of departure of a branch of the locus from repeated poles with multiplicity q is given by

$$
\begin{aligned}
& q \phi_{l, \text { dep }}=\sum \psi_{i}-\sum_{i \neq l, d e p} \phi_{i}-180^{\circ}-360^{\circ}(l-1) \\
& l=1,2, \cdots, q
\end{aligned}
$$

- Rule 4:
- The angle of arrival of a branch at a zero with multiplicity q is given by

$$
\begin{aligned}
& q \psi_{l, a r r}=\sum \phi_{i}-\sum_{i \neq l, a r r} \psi_{i}+180^{\circ}+360^{\circ}(l-1) \\
& \quad l=1,2, \cdots, q
\end{aligned}
$$

$\sum \phi_{i}$ the sum of the angles to all the poles
$\sum \psi_{i}$ the sum of the angles to the remaining zeros

- For this example:

$$
\begin{aligned}
\sum \psi_{i} & -\sum \phi_{i}=180^{\circ}+360^{\circ}(l-1) \\
\phi_{1} & =-90^{\circ}-135^{\circ}-180^{\circ} \\
& =-405^{\circ} \\
& =-45^{\circ}
\end{aligned}
$$

- Rule 5:
- The locus can have multiple roots at points on the locus and the branches will approach a point of q roots at angles separated by $\frac{180^{\circ}-360^{\circ}(l-1)}{q}$
- And will depart at angles with same separation.
- For example:

$$
\begin{aligned}
& L(s)=\frac{b(s)}{a(s)}=\frac{1}{s(s+1)} \\
& K=\frac{1}{4} \quad \Rightarrow s_{1,2}=-\frac{1}{2} \\
& 0^{\circ}, 180^{\circ} \quad \Rightarrow+90^{\circ},-90^{\circ}
\end{aligned}
$$

- Rule 5:
- Continuation Locus:

$$
\begin{aligned}
& L(s)=\frac{b(s)}{a(s)}=\frac{1}{s(s+1)} \\
& K_{1}=\frac{1}{4} \quad \Rightarrow K=K_{1}+K_{2}=\frac{1}{4}+K_{2} \\
& \Rightarrow s^{2}+s+\frac{1}{4}+K_{2}=0
\end{aligned}
$$

$$
\Rightarrow\left(s+\frac{1}{2}\right)^{2}+K_{2}=0
$$

$$
K_{2}=0 \quad \Rightarrow s_{1,2}=-\frac{1}{2}
$$

$$
2 \phi_{\text {dep }}=-180^{\circ}-360^{\circ}(l-1)
$$

$$
\phi_{\text {dep }}= \pm 90^{\circ}
$$

$$
\phi_{\text {arr }}=0^{\circ}, 180^{\circ}
$$

- The third-order example:

$$
L(s)=\frac{1}{s\left(s^{2}+8 s+32\right)}
$$

$$
\begin{aligned}
& s=\operatorname{tf}(\text { 's' }) \\
& \text { sysL }=(1) /\left(s^{*}\left(s^{\wedge} 2+8^{*} s+32\right)\right) \\
& \text { sysL }=1 /\left(s^{*}\left((s+4)^{\wedge} 2+16\right)\right) \\
& \text { rlocus(sysL })
\end{aligned}
$$

- Rule 1:
- The n branches of the locus start at the poles of $\mathrm{L}(\mathrm{s})$ and
- m of these branches end on the zeros of $L(s)$.
- Rule 2 :
- The loci are on the real axis to the left of an odd number of poles and zeros.
- Rule 3:
- For large s and K,
n - m branches of the loci are asymptotic
to lines at angles ϕ radiating out from the point $s=\alpha$ on the real axis, where

$$
\phi_{l}=\frac{180^{\circ}+360^{\circ}(l-1)}{n-m \quad l=1,2, \cdots, n-m} \quad \alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

- Rule 4:
- The angle of departure of a branch of the locus from repeated poles with multiplicity q is given by

$$
\begin{aligned}
q \phi_{l, \text { dep }}=\sum \psi_{i}-\sum_{i \neq l, d e p} \phi_{i}-180^{\circ}-360^{\circ}(l-1) \\
\quad l=1,2, \cdots, q
\end{aligned}
$$

- The angle of arrival of a branch at a zero with multiplicity q is given by

$$
q \psi_{l, a r r}=\sum \phi_{i}-\sum_{i \neq l, a r r} \psi_{i}+180^{\circ}+360^{\circ}(l-1)
$$

- Rule 5:
- The locus can have multiple roots at points on the locus and the branches will approach a point of q roots at angles separated by $\quad \frac{180^{\circ}-360^{\circ}(l-1)}{q}$
- And will depart at angles with same separation.
- The positive root locus
is a plot of all possible locations
for roots to the equation $1+K L(s)=0$ for some real positive value of K.
- The purpose of design
is to select a particular value of K
that will meet the specifications
for static and dynamic response.

$$
\begin{aligned}
L(s) & =\frac{1}{\left.s\left[(s+4)^{2}+16\right)\right]} \\
L\left(s_{0}\right) & =\frac{1}{s_{0}\left(s_{0}-s_{2}\right)\left(s_{0}-s_{3}\right)} \\
K & =\frac{1}{\left|L\left(s_{0}\right)\right|} \\
& =\left|s_{0}\right|\left|s_{0}-s_{2}\right|\left|s_{0}-s_{3}\right| \\
& \approx 4.0 \times 2.1 \times 7.7 \\
& \approx 65
\end{aligned}
$$

$$
\begin{aligned}
& s=\operatorname{tf}(\text { 's' }) \\
& \text { sysL }=(1) /\left(s^{*}\left(s^{\wedge} 2+8^{*} s+32\right)\right) \\
& \text { sysL }=(1) /\left(s^{*}\left((s+4)^{\wedge} 2+16\right)\right)
\end{aligned}
$$

rlocus(sysL);
[K, p] = rlocfind(sysL);

- Compute the error constant of the control system
- For example, the steady-state error in tracking a ramp input is giving by the velocity constant:

$$
\begin{aligned}
K_{v} & =\lim _{s \rightarrow 0} s K L(s) \\
& =\lim _{s \rightarrow 0} s K \frac{1}{\left.s\left[(s+4)^{2}+16\right)\right]} \\
& =\frac{K}{32} \\
& =\frac{65}{32} \approx 2 \mathrm{sec}^{-1}
\end{aligned}
$$

