Spring 2021

控制系統
Control Systems

Unit 50 \＆ 60
 Root Locus（s－Domain）and Bode Plot（w－Domain）

Feng－Li Lian NTU－EE

Feb－Jun， 2021

- Open-loop system showing reference, R, control, U, disturbance, W, and output Y

$$
\begin{aligned}
G & =\frac{b(s)}{a(s)} \\
D & =\frac{c(s)}{d(s)}
\end{aligned}
$$

- Closed-loop system showing reference, R, control, U, disturbance, W, output, Y , and sensor noise, V
- Time functions associated with points in the s-plane (LHP, left half-plane; RHP, right half-plane)

- Overshoot M_{p} and Peak time t_{p}

$$
Y(s)=H(s) \frac{1}{s}
$$

$$
H(s)=\frac{w_{n}^{2}}{s^{2}+2 \zeta w_{n} s+w_{n}^{2}}
$$

$$
\sigma=w_{n} \zeta
$$

$$
w_{d}=w_{n} \sqrt{1-\zeta^{2}}
$$

$$
\begin{aligned}
& A \sin (\alpha)+B \cos (\beta)=C \cos (\alpha-\beta) \\
& C=\sqrt{A^{2}+B^{2}}=\frac{1}{\sqrt{1-\zeta^{2}}} \\
& \beta=\tan ^{-1}\left(\frac{A}{B}\right) \\
& =\tan ^{-1}\left(\frac{\zeta}{\sqrt{1-\zeta^{2}}}\right)=\sin ^{-1}(\zeta)
\end{aligned}
$$

$$
\begin{aligned}
\left.\Rightarrow y(t)=1-e^{-\sqrt{\sigma t}\left(\cos w_{d} t+\frac{\sigma}{w_{d}} \sin w_{d} t\right.}\right) & \Rightarrow M_{p}=e^{\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}} \\
\Rightarrow y(t)=1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}} \cos \left(w_{d}-\beta\right)} & \Rightarrow t_{r} \cong \frac{1.8}{w_{n}} \\
& \Rightarrow t_{s}=\frac{4.6}{\zeta w_{n}}=\frac{4.6}{\sigma}
\end{aligned}
$$

Ziegler-Nichols Tuning of the PID Controller

- Method 2: Ultimate Sensitivity Method:

Based on evaluating the amplitude and frequency
of the oscillations of the system at the limit of stability rather than on taking a step response.

- Determination of ultimate gain and period

- K_{u} : Ultimate Gain
- P_{u} : Ultimate Period

Ziegler-Nichols Tuning for the Regulator
$D_{c}(s)=k_{P}\left(1+1 / T_{I} s+T_{D} s\right)$, Based on the Ultimate Sensitivity Method

Type of Controller	Optimum Gain
P	$k_{P}=0.5 K_{u}$
PI	$\left\{\begin{array}{l}k_{P}=0.45 K_{u} \\ T_{I}=\frac{P_{u}}{1.2}\end{array}\right.$
PID	$\left\{\begin{array}{l}k_{P}=0.6 K_{u} \\ T_{I}=0.5 P_{u} \\ T_{D}=0.125 P_{u}\end{array}\right.$

Complex Poles: Damping Ratio, Undamped Natural Frequenc 9

$$
\begin{aligned}
H(s) & =\frac{w_{n}^{2}}{\left(s+\zeta w_{n}\right)^{2}+w_{n}^{2}\left(1-\zeta^{2}\right)} & \sigma & =w_{n} \zeta \\
h(t) & =\frac{w_{n}}{\sqrt{1-\zeta^{2}}} e^{-\sigma t}\left(\sin w_{d} t\right) 1(t) & w_{d} & =w_{n} \sqrt{1-\zeta^{2}}
\end{aligned}
$$

- Responses of second-order systems versus ζ :
(a) Impulse Responses

(a)
(b) Step Responses

(b)
$G(s=j w) \mid$
$G(s)=\frac{1}{\left(s / w_{n}\right)^{2}+2 \zeta\left(s / w_{n}\right)}+1$

Plant (P)

Unit 5 Root Locus

- By Hand:

- Hand Writing in Exam (40\%)

- Use the 5 rules of Root Locus Method
to roughly sketch the root locus of any transfer function
by identifying these critical root locations
- Properly choose some roots
between these critical root locations
- By Computer:
- Multiple Choice in Exam (60\%)
- Use Matlab codes
to draw the exact root locus of any transfer function
- Design proper transfer function and
select associated and reasonable gain value

$\Rightarrow 1+K_{P} \frac{1}{s^{2}}=0$

$$
\Rightarrow 1+K \frac{s+1}{s^{2}}=0
$$

$\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0
$$

$$
\begin{aligned}
& \Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0 \\
& \Rightarrow 1+K \frac{(s+1)}{s^{2}(s+9)}=0 \\
& \Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0
\end{aligned}
$$

$$
\Rightarrow 1+K \frac{s+1}{s^{2}}=0
$$

$$
\Rightarrow 1+K \frac{s+1}{s^{2}}=0
$$

$\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+4)}=0$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+9)}=0
$$

$$
\Rightarrow 1+K \frac{(s+1)}{s^{2}(s+12)}=0
$$

- Proper transfer function
- Reasonable gain values

Unit 6

Bode Plot

(a)

- Root Locus:
- Bode Plot:
- Nyquist Plot:

- By Hand:

- Hand Writing in Exam (40\%)

- Use the Bode Plot Techniques
to roughly sketch the magnitude and phase plots of any transfer function
by identifying these critical frequency locations
- By Computer:
- Multiple Choice in Exam (60\%)
- Use Matlab codes
to draw the exact Bode Plot, Nyquist Plot
of any transfer function
- Design proper transfer function and
select associated and reasonable gain value
- Class 1: Singularities at the origin $\quad K_{0}(j w)^{n}$
$\log K_{0}\left|(j w)^{n}\right|$
$=\log K_{0}+n \log |j w|$

$$
\angle K_{0}(j w)^{n}=n \times 90^{0}
$$

- Class 2: Frist-order term

$$
G(s)=10 s+1
$$

$$
\begin{aligned}
& (j w \tau+1)^{ \pm 1} \\
G(s)= & \frac{1}{10 s+1}
\end{aligned}
$$

Your Jobs by Hands and Pens

CS50\&60-RL(s)\&BP(w) - 23
Feng-Li Lian © 2021

- Class 3: $\left[\left(\frac{j w}{w_{n}}\right)^{2}+2 \zeta \frac{j w}{w_{n}}+1\right]^{ \pm 1}$
$G(s=j w) \mid$
$G(s)=\frac{1}{\left(s / w_{n}\right)^{2}+2 \zeta\left(s / w_{n}\right)+1}$

$$
\angle G(s=j w)
$$

$$
\angle G\left(j w_{n}\right)=-90^{\circ}
$$

- First-Order CT Systems:
$20 \log _{10}|H(j w)|=$

$$
H(j w)=\frac{1}{j w \tau+1}
$$

$\Varangle H(j w)=$
$\begin{cases}0 & w \leq 0.1 / \tau \\ -(\pi / 4)\left[\log _{10}(w \tau)+1\right] & 0.1 / \tau \leq w \leq 10 / \tau \\ =-(\pi / 4)\left[\log _{10}(w)\right. & \left.+\log _{10}(\tau)+1\right] \\ -\pi / 4 & w=1 / \tau \\ -\pi / 2 & w \geq 10 / \tau\end{cases}$

- Second-Order CT Systems:

$$
H(j w)=\frac{1}{\left(j \frac{w}{w_{n}}\right)^{2}+2 \zeta\left(j \frac{w}{w_{n}}\right)+1}
$$

$20 \log _{10}|H(j w)|=$

$\begin{cases}0 & w \ll w_{n} \\ -20 \log _{10}(2 \zeta) & w=w_{n} \\ -40 \log _{10}(w)+40 \log _{10}\left(w_{n}\right) & w \gg w_{n}\end{cases}$

- For $\zeta<\frac{\sqrt{2}}{2} \quad w_{\max }=w_{n} \sqrt{1-2 \zeta^{2}}$

$$
\Varangle H(j w)=
$$

$$
\begin{cases}0 & w \leq 0.1 w_{n} \\ -(\pi / 2)\left[\log _{10}\left(w / w_{n}\right)+1\right] & 0.1 w_{n} \leq w \leq 10 w_{n} \\ -\pi / 2 & w=w_{n} \\ -\pi & w \geq 10 w_{n}\end{cases}
$$

- Example 6.3: Bode Plot for Real Poles and Zeros $K G(s)=\frac{2000(s+0.5)}{s(s+10)(s+50)}$
(1) Break points

$$
K G(j w)=\frac{2\left[\frac{j w}{0.5}+1\right]}{(j w)\left[\frac{j w}{10}+1\right]\left[\frac{j w}{50}+1\right]}
$$

- Break points: 0.5, 10, 50
(2) Asymptotes
- Low-Frequency Asymptote: $K G(j w)=\frac{2}{(j w)} \quad$ for $w<0.1$
- $\omega \ll 0.5: \quad$ slope $=-1 \quad$ (or $-20 \mathrm{db} /$ decade)
- $0.5<\omega<10: \quad$ slope $=0 \quad$ (or $0 \mathrm{db} /$ decade)
- $10<\omega<50$: slope $=-1 \quad$ (or $-20 \mathrm{db} /$ decade)
- $50<\omega$:
slope $=-2 \quad$ (or $-40 \mathrm{db} /$ decade)
- Example 6.3: Bode Plot for Real Poles and Zeros

- Example 6.3: Bode Plot for Real Poles and Zeros
(3) Magnitude at break poihts
- By Zero: 1.4 (+3db)
- By Pole: 0.7 (- 3db)

- Example 6.3: Bode Plot for Real Poles and Zeros

- Example 6.3: Bode Plot for Real Poles and Zeros $K G(s)=\frac{2000(s+0.5)}{s(s+10)(s+50)}$
(1) Break points

$$
K G(j w)=\frac{2\left[\frac{j w}{0.5}+1\right]}{(j w)\left[\frac{j w}{10}+1\right]\left[\frac{j w}{50}+1\right]}
$$

- Break points: 0.5, 10, 50
(4) Phase
- Low-Frequency Asymptote: $K G(j w)=\frac{2}{(j w)} \quad$ for $w<0.1$
- $\omega \ll 0.5: \quad$ phase $=-90^{\circ}$
- $0.5<\omega<10: \quad$ phase $=0^{\circ}$
- $10<\omega<50: \quad$ phase $=-90^{\circ}$
- $50<\omega$:
phase $=-180^{\circ}$
- Example 6.3: Bode Plot for Real Poles and Zeros

- Example 6.3: Bode Plot for Real Poles and Zeros

- Example 6.3: Bode Plot for Real Poles and Zeros

- Example 6.3: Bode Plot for Real Poles and Zeros

$$
\begin{aligned}
& \frac{2000(s+0.5)}{s(s+10)(s+50)} \\
& \frac{2\left[\frac{j w}{0.5}+1\right]}{(j w)\left[\frac{j w}{10}+1\right]\left[\frac{j w}{50}+1\right]}
\end{aligned}
$$

- Break points: 0.5, 10, 50

Examples

- Example 6.4: Bode Plot for Complex Poles

$$
=\frac{10}{4} \frac{1}{s\left[\frac{s^{2}}{4}+2(0.1) \frac{s}{2}+1\right]}
$$

- Break points: 2

- Example 6.5:

$$
=\left(\frac{1}{10}\right)(1+j w)\left(\frac{1}{1+j \frac{w}{10}}\right)\left(\frac{1}{1+j \frac{w}{100}}\right)
$$

First-Order \& Second-Order CT Systems

- Example 6.5: $H(j w)=100(1+j w)$

- Example 6.8: Nyquist Plot for a Second-Order System

- $N=0$: not encircle -1
- $\mathrm{P}=0$: no poles of $\mathrm{G}(\mathrm{s})$ in RHP
- $Z=N+P \rightarrow Z=0$, no unstable roots for $K=1$
- K > 0 also holds
- Example 6.9: Nyquist Plot for a Third-Order System

- PM vs K
- K = 5
- $|K G(j w)|=1$
- $\mathrm{PM}=-22^{\circ}$
- K = 0.5
- $|K G(j w)|=1$
- $\mathrm{PM}=+45^{\circ}$
- K = 0.2
- | KG(jw) | = 1
- $\mathrm{PM}=+70^{\circ}$

- Example 6.15: Lead Compensation for a DC Motor
$K G(s) \quad K D_{c}(s) G(s)$

Examples

- Example 6.15: Lead Compensation for a DC Motor

$$
K D_{c}(s)=10 \frac{\frac{s}{2}+1}{\frac{s}{10}+1} \quad K D_{c}(s)=K \frac{\frac{s}{2}+1}{\frac{s}{10}+1} \left\lvert\, \begin{array}{r}
10 \\
8 \\
\frac{1}{s(s+1)} \\
6 \\
4 \\
-15 \\
\hline
\end{array} \underbrace{\operatorname{Im}(s)}_{-10}\right.
$$

- Example 6.17: Lead-Compensation Design
for Type 1 Servomechanism System

$$
\begin{array}{ll}
K G(s)=K \frac{10}{s\left(\frac{s}{2.5}+1\right)\left(\frac{s}{6}+1\right)} & -K_{v}=10 \\
& -\mathrm{PM}=45^{\circ}
\end{array}
$$

1. Determine gain K :

$$
\begin{aligned}
K_{v} & =\lim _{s \rightarrow 0} s K G(s) \\
& =K \times 10=10 \\
& \Rightarrow K=1
\end{aligned}
$$

2. Bode plot of $\mathrm{KG}(\mathrm{s}), \mathrm{K}=1$
$\rightarrow P M \sim=-4, W c p \sim=4$

- Example 6.17: Lead-Compensation Design
for Type 1 Servomechanism System

3. Allow for 5° of extra margin

$$
\rightarrow 45^{\circ}+5^{o}-\left(-4^{o}\right)=54^{o}
$$

4. Pick $\alpha \rightarrow 1 / \alpha=10$
5. Zero \& Pole
a zero at 2
a pole at 20

$$
\begin{aligned}
& D_{1}(s)=\frac{\left(\frac{s}{2}+1\right)}{\left(\frac{s}{20}+1\right)} \\
& =\frac{1}{0.1}\left(\frac{s+2}{s+20}\right) \\
& \rightarrow P M \sim=23, W c p \sim=7
\end{aligned}
$$

- Example 6.17: Lead-Compensation Design
for Type 1 Servomechanism System

7. A double-lead compensator:

$$
D_{2}(s)=\frac{\left(\frac{s}{2}+1\right)\left(\frac{s}{4}+1\right)}{\left(\frac{s}{20}+1\right)\left(\frac{s}{40}+1\right)}=\frac{1}{(0.1)^{2}} \frac{(s+2)(s+4)}{(s+20)(s+40)}
$$

- $\mathrm{PM}=46^{\circ}$

- Example 6.19: Lag Compensation for the DC Motor

$$
G(s)=\frac{1}{s(s+1)}
$$

- Error constant: $K_{v}=10$
- $\mathrm{PM}=45^{\circ}$

- Example 6.19: Lag Compensation for the DC Motor

$$
\begin{array}{ll}
G(s)=\frac{1}{s(s+1)} & - \text { Error constant: } K_{v}=10 \\
-\mathrm{PM}=45^{\circ}
\end{array}
$$

- No steady-state error \checkmark a Type 1 system
- Settling time ~= 25 sec
- Rise time ~= 2 sec
- Example 6.15: Lead Compensation

Example

- Example 6.20: PID Compensation
$D_{c}(s)=\frac{K}{s}\left[\left(T_{D}+1\right)\left(s+\frac{1}{T_{I}}\right)\right]$
for Spacecraft Attitude Control

$$
\begin{array}{ll}
\frac{1}{T_{I}}=0.5 & \frac{1}{T_{D}}=10 \\
\frac{1}{T_{I}}=0.05 & \frac{1}{T_{D}}=1 \\
\frac{1}{T_{I}}=0.005 & \frac{1}{T_{D}}=0.1
\end{array}
$$

- $\mathrm{PM}=65^{\circ}$

- \rightarrow Find K
- | $D_{c}(s) G(s) \mid=20$
- $1 / K=20$
- K = 0.05

- Example 6.20: PID Compensation

$$
\mathcal{T}(s)=\frac{\Theta}{\Theta_{c o m}}=\frac{D_{c} G}{1+D_{c} G H}
$$

- Frequency Response of $T(s)$ and $S(s)$ are shown:

