Spring 2021

控制系統
 Control Systems

Unit 3E
 Effects of Zeros and Additional Poles

Feng－Li Lian
NTU－EE
Feb－Jun， 2021

- Same Poles, Different Zeros

$$
\begin{array}{rlrl}
H_{1}(s) & =\frac{2}{(s+1)(s+2)} & H_{2}(s) & =\frac{2(s+1.1)}{1.1(s+1)(s+2)} \\
& =\frac{2}{s+1}-\frac{2}{s+2} & & =\frac{2}{1.1}\left(\frac{0.1}{s+1}+\frac{0.9}{s+2}\right) \\
& =\frac{0.18}{s+1}+\frac{1.64}{s+2}
\end{array}
$$

- One zero at $z=-1.1$ cancels the effect of the pole at $p=-1$
- Same Poles, Different Zeros

$$
H(s)=\frac{\frac{s}{\alpha \zeta w_{n}}+1}{\left(\frac{s}{w_{n}}\right)^{2}+2 \zeta\left(\frac{s}{w_{n}}\right)+1}
$$

- Zero:

$$
s=-\alpha \zeta w_{n}=-\alpha \sigma
$$

- If $\alpha \gg 1$,
the zero will be far removed from the poles and the zero will have little effect on the response.
- If $\alpha==1$,
the zero will have a substantial influence on the response.
- Same Poles, Different Zeros
- Plots of the step response of a second-order system with a zero ($\zeta=0.5$)
- Plots of the step response of a second-order system with a zero $(\zeta=0.707)$

- Increase Overshoot M_{p} and reduce Rise Time t_{r}
- Little influence on Settling Time t_{s}
- Same Poles, Different Zeros
- Plot of Overshoot M_{p} as a function of normalized zero location α. At $\alpha=1$, the real part of the zero equals the real part of the poles

- Same Poles, Different Zeros

$$
H(s)=\frac{\frac{s}{\alpha \zeta w_{n}}+1}{\left(\frac{s}{w_{n}}\right)^{2}+2 \zeta\left(\frac{s}{w_{n}}\right)+1}
$$

- By normalizing frequency

$$
\Rightarrow H(s)=\frac{\frac{s}{\alpha \zeta}+1}{s^{2}+2 \zeta s+1}
$$

$$
\tau \triangleq w_{n} t
$$

$$
=\frac{1}{s^{2}+2 \zeta s+1}+\left(\frac{1}{\alpha \zeta}\right)\left(\frac{s}{s^{2}+2 \zeta s+1}\right)
$$

$$
\triangleq H_{0}(s)+H_{d}(s)
$$

$$
\Rightarrow y(t)=y_{0}(t)+y_{d}(t) \quad=y_{0}(t)+\frac{1}{\alpha \zeta} \dot{y}_{0}(t)
$$

- Same Poles, Different Zeros
- Second-order step responses $y(t)$ of the transfer functions $H(s), H_{0}(s)$, and $H_{d}(s)$
- Step responses $y(t)$ of a second-order system with a zero in the RHP: a nonminimum-phase system

- Zero of $H_{d}(s)$ increase Overshoot M_{p}
- Example 3.28: Effect of Proximity of Zero to Pole Locations on the Transient Response

$$
\begin{aligned}
& H(s)=\frac{24}{z} \frac{s+z}{(s+4)(s+6)} \quad z=\{1,2,3,4,5,6\} \\
& Y(s)=H(s) \frac{1}{s} \quad=\frac{24}{z} \frac{s+z}{s(s+4)(s+6)} \\
& \quad=\frac{24}{z} \frac{s}{s(s+4)(s+6)}+\frac{24}{s(s+4)(s+6)} \\
& y(t)=y_{1}(t)+y_{2}(t) \\
& y_{1}(t)=\frac{12}{z} e^{-4 t}-\frac{12}{z} e^{-6 t} \\
& y_{2}(t)=z \int_{0}^{t} y_{1}(\tau) d \tau=-3 e^{-4 t}+2 e^{-6 t}+1 \\
& y(t)=1+\left(\frac{12}{z}-3\right) e^{-4 t}+\left(2-\frac{12}{z}\right) e^{-6 t}
\end{aligned}
$$

- Example 3.28: Effect of Proximity of Zero to Pole Locations on the Transient Response
- Effect of zero on transient response

```
z=1;
sys1 = 4* }\mp@subsup{6}{}{*}(1/\mp@subsup{z}{}{*}\textrm{s}+1)/((s+4\mp@subsup{)}{}{*}(s+6))
[y1] = step(sys1,t);
plot(t,y1,'LineWidth',2);
hold on;
z=6;
sys6 = 4*6* (1/z*s+1)/((s+4)*(s+6));
[y6] = step(sys6,t);
plot(t,y6,'-.','LineWidth',2);
```


- Influence of zero on response overshoot
- $\mathrm{z}=4$ or $\mathrm{z}=6$: absent due to zero-pole cancelations
- z = 5: no overshoot
- Example 3.29: Effect of Proximity of Complex Zeros to Lightly Damped Poles
$H(s)=\frac{(s+\alpha)^{2}+\beta^{2}}{(s+1)\left[(s+0.1)^{2}+1\right]}$
$s=-\alpha+j \beta$
- Locations of complex zeros
$(\alpha, \beta)=(0.1,1.0),(0.25,1.0),(0.5,1.0)$

- Effect of complex zeros on transient response
- Example 3.30: Aircraft Response Using Matlab

$$
\frac{h(s)}{\delta_{e}(s)}=\frac{30(s-6)}{s\left(s^{2}+4 s+13\right)}
$$

$$
s=t f(' s ')
$$

$$
u=-1
$$

$$
\operatorname{sys} G=u^{*} 30^{*}(s-6) /\left(s^{\wedge} 3+4^{\star} s^{\wedge} 2+13^{*} s\right)
$$

$$
t=0: 0.1: 6
$$

$$
\mathrm{y}=\text { impulse(sysG, t })
$$

plot(t, y)
grid
hold on;

- Final Value:

$$
\left.s \frac{30(s-6)(-1)}{s\left(s^{2}+4 s+13\right)}\right|_{s=0}=\frac{30(-6)(-1)}{13}=13.8
$$

- Example 3.30: Aircraft Response Using Matlab
- Rise Time t_{r}

$$
\begin{aligned}
& t_{r} \cong \frac{1.8}{w_{n}}=\frac{1.8}{\sqrt{13}}=0.5 \mathrm{sec} \\
& 2 \zeta w_{n}=4 \\
& \zeta=\frac{2}{\sqrt{13}}=0.55 \\
& \Rightarrow M_{p}=14 \%=0.14 \\
& \Rightarrow t_{s}=\frac{4.6}{\zeta w_{n}}=\frac{4.6}{\sigma}=\frac{4.6}{2}=2.3 \mathrm{sec}
\end{aligned}
$$

- Effects of Pole-Zero Patterns on Dynamic Response

$$
H(s)=\frac{1}{\left(\frac{s}{\alpha \zeta w_{n}}+1\right)\left[\left(\frac{s}{w_{n}}\right)^{2}+2 \zeta\left(\frac{s}{w_{n}}\right)+1\right]}
$$

- Step responses for several third-order systems with $\zeta=0.5$
- Step responses for several third-order systems with $\zeta=0.707$

- Effects of Pole-Zero Patterns on Dynamic Response
- Rise time t_{r}

$$
\begin{aligned}
& \Rightarrow t_{r} \cong \frac{1.8}{w_{n}} \\
& \Rightarrow M_{p}= \begin{cases}5 \%, & \zeta=0.7 \\
16 \%, & \zeta=0.5 \\
35 \%, & \zeta=0.3\end{cases}
\end{aligned}
$$

- Settling time t_{s}

$$
\Rightarrow t_{s}=\frac{4.6}{\zeta w_{n}}=\frac{4.6}{\sigma}
$$

- Effects of Pole-Zero Patterns on Dynamic Response
- A zero in LHP will increase the overshoot
if the zero is within a factor of 4
of the real part of the complex poles.
- A zero in RHP will depress the overshoot.

- Effects of Pole-Zero Patterns on Dynamic Response
- An additional pole in the LHP
will increase the rise time significantly
if the extra pole is within a factor of 4 of the real part of the complex poles.
- Normalized rise time for several locations of an additional pole

