Spring 2021

控制系統 Control Systems

Unit 2E Electric Circuits

Feng-Li Lian NTU-EE Feb – Jun, 2021 The basic equations Symbol Equation of electric circuits are $v \neq \downarrow^i$ Resistor v = Rithe Kirchhoff's laws $i = C \frac{dv}{dt}$ Capacitor Kirchhoff's Current Law (KCL): The algebraic sum of the currents leaving a node $v = L \frac{di}{dt}$ Inductor The algebraic sum of the currents entering that node Voltage $v = v_s$ v_s source Kirchhoff's Voltage Law (KVL): Current $i = i_s$ The algebraic sum of all voltages source

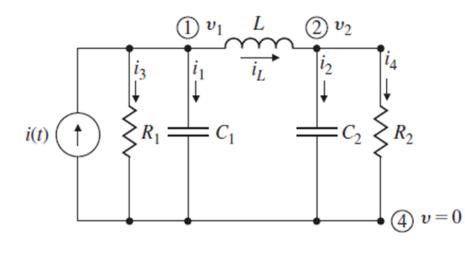
taken around a closed path in a circuit is zero

Example 2.8 the Bridged Tee Circuit

Bridged Tee Circuit $\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$

Model (Equations of Motion)

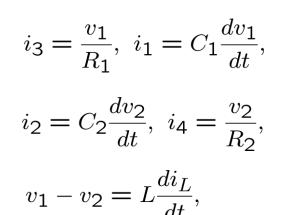
- Select node 4 as the reference
- v_1, v_2, v_3 as the unknowns
- By KVL, $v_1 = v_i$


• At node 2, the KCL is

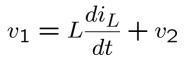
$$-\frac{v_1 - v_2}{R_1} + \frac{v_2 - v_3}{R_2} + C_1 \frac{dv_2}{dt} = 0$$
$$\frac{v_3 - v_2}{R_2} + C_2 \frac{d(v_3 - v_1)}{dt} = 0$$

• At node 3, the KCL is

• Transfer function from input v_i to output v_o can be derived

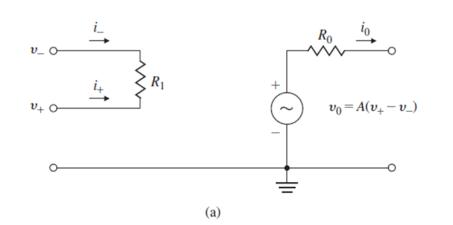

Circuit with a current source

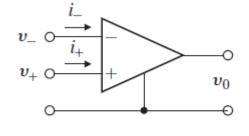
Model (Equations of Motion)

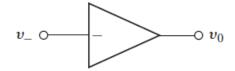

- Select node 4 as the reference
- v_1, v_2, i_L as the unknowns
- At node 1, the KCL is $i(t) = i_3 + i_1 + i_L$
- At node 2, the KCL is $i_L = i_2 + i_4$

We also have the relations

$$i(t) = \frac{v_1}{R_1} + C_1 \frac{dv_1}{dt} + i_L,$$

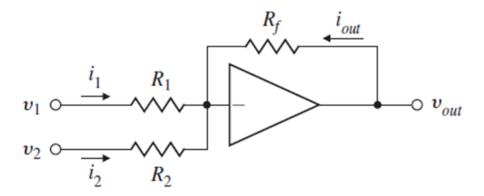

$$i_L = C_2 \frac{dv_2}{dt} + \frac{v_2}{R_2}$$


Example 2.10 Operational Amplifier Summer



Assume connected to ground,

(c)


• Assume ideal op-amp, $R_1 = \infty, R_0 = 0, A = \infty$

$$i_+ = i_- = 0, \quad v_+ - v_- = 0$$

 $v_{+} = 0$

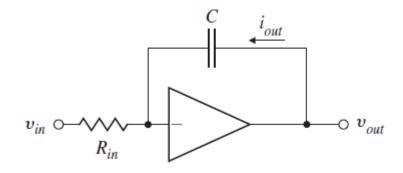
Example 2.10 Operational Amplifier Summer

The op-amp summer

• From $v_{+} - v_{-} = 0$, we have $v_{-} = 0$

• Thus, $i_1 = \frac{v_1}{R_1}, i_2 = \frac{v_2}{R_2}, i_{out} = \frac{v_{out}}{R_f}$

• From $i_{+} = i_{-} = 0$, we have $i_{1} + i_{2} + i_{out} = 0$, $\frac{v_{1}}{R_{1}} + \frac{v_{2}}{R_{2}} + \frac{v_{out}}{R_{f}} = 0$


Model (Equations of Motion)

$$v_{out} = -\left[\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2\right]$$

(Output is the weighted sum of input voltages)

Example 2.11 Integrator

The op-amp integrator

 $i_{in} + i_{out} = 0$

 $\frac{v_{in}}{R_{in}} + C\frac{dv_{out}}{dt} = 0$

Model (Equations of Motion)

$$v_{out} = -\frac{1}{R_{in}C} \int_0^t v_{in}(\tau) d\tau + v_{out}(0)$$

Transfer Function

$$V_{out}(s) = -\frac{1}{s} \frac{V_{in}(s)}{R_{in}C}$$

(Assume zero initial condition)

Table 2.1 [Dorf & Bishop 2017]

System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v ₂₁	Displacement difference, y_{21}
Mechanical rotational	Torque, T	Angular momentum, <i>h</i>	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, Q	Volume, V	Pressure difference, P_{21}	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Table 2.2-1 [Dorf & Bishop 2017]

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power ℬ	Symbol
Inductive storage	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	$v_2 \circ \underbrace{L}_{i} \circ v_1$
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \xrightarrow{k} v_1 \to F$
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \overset{k}{\longrightarrow} T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ P_1$
Table 2.2-2				
Capacitive storage	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^2$	$v_2 \circ \underbrace{i}_{i} C \circ v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \rightarrow v_2 \qquad M \qquad v_1 = constant$
	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \longrightarrow \sigma_{\omega_2} \qquad J \qquad \sigma_{\omega_1} = constant$
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}{}^2$	$Q \longrightarrow C_f P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E = C_t \mathcal{T}_2$	$q \xrightarrow{\sigma_2} C_t \xrightarrow{\sigma_1} \\ \mathcal{T}_1 = \\ \text{constant}$

Table 2.2.3 [Dorf & Bishop 2017]

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power	Symbol
Energy dissipators	Electrical resistance Translational damper Rotational damper	$i = \frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \underbrace{R i}_{k} \circ v_1$
	Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}{}^2$	$F \xrightarrow{} v_2 \xrightarrow{} b \xrightarrow{} v_1$
	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}{}^2$	$T \longrightarrow \omega_2 \qquad b \qquad \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1 \circ P_1$
		$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ ^{R_t} \overbrace{q}^{q} \circ \mathcal{T}_1$