Spring 2020

控制系統 Control Systems

Unit 7A
Control System Design:
Principles and Case Studies

Feng-Li Lian & Ming-Li Chiang
NTU-EE
Mar 2020 – Jul 2020

Examples of control systems design

- Outline of Control Systems Design
- Satellite's Attitude Control
- Lateral & Longitudinal Control of Boeing
- Fuel—Air Ratio in an Automotive Engine
- Read Write Head of a Hard Disk
- RTP Systems in Wafer Manufacturing
- Chemotaxis Swims Away from Trouble
- Quadrotor Drone

- Control Tutorials Website
- Cruise Control
 - Motor Speed
 - Motor Position
 - Suspension
 - Inverted Pendulum
 - Aircraft Pitch
 - Ball & Beam

Controller

2. Response

1. Model

3. Analysis

4. Feedback

5. Control

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = 3$$

$$G(s) = \frac{Y(s)}{R(s)} = \frac{3}{s^2 + 4s + 1}$$

Source: IEEE CSM 2013

Outline of Control Systems Design

- (Step 1)
- Understand the process and translate dynamic performance requirements into time, frequency, or pole-zero specifications.
 - a step response inside some constraint boundaries
 - an open-loop frequency response satisfying certain constraints
 - closed-loop poles to the left of some constraint boundary

Outline of Control Systems Design

- (Step 2)
- Select sensors
 - Select the types and number of sensors considering location, technology,

Number of sensors and locations:	Select minimum required number of sensors and their optimal locations
Technology:	Electric or magnetic, mechanical, electromechanical, electro- optical, piezoelectric
Functional performance:	Linearity, bias, accuracy, bandwidth, resolution, dynamic range, noise
Physical properties:	Weight, size, strength
Quality factors:	Reliability, durability, maintainability
Cost	Expense, availability, facilities for testing and maintenance

Outline of Control Systems Design

- (Step 3)
- Select actuators

Number of actuators

- The device that influences the response is the actuator
- Select the types and number of actuators considering location, technology, noise, and power

and locations:	
Technology:	Electric, hydraulic, pneumatic, thermal, other
Functional	Maximum force possible, extent of the linear range, maximum
performance:	speed possible, power, efficiency, etc.

Select minimum required actuators and their optimal locations

Physical properties: Weight, size, strength
Quality factors: Reliability, durability, maintainability

Cost: Expense, availability, facilities for testing and maintenance

- (Step 4)
- Construct a linear model
 - Construct a linear model of the process, actuator, and sensor

- (Step 5)
- Try a simple proportional-integral-derivative (PID) or lead-lag design
 - Try a simple trial design based on the concepts of lead-lag compensation or PID control
 - (Step 6)
 - Evaluate/verify plant
 - Consider modifying the plant itself for improved closed-loop control

- (STEP 7)
- Try an optimal design (State space design)
 - If the performance from the simple compensator in Step 5 is not adequate,
 perform a trial pole-placement design based on optimal control or other criteria
 - (not included)
 - (STEP 8)
 - Build a computer model, and compute (simulate) the performance of the design
 - Simulate the design, including the effects of nonlinearities, noise, and parameter variations. If the performance is not satisfactory, return to Step 1 and repeat.
 Consider modifying the plant itself for improved closed-loop control
 - (STEP 9)
 - Build a prototype

- (STEP 1.) Understand the process and its performance specifications
 - the vehicle has an astronomical survey mission requiring accurate pointing of a scientific sensor package.

 θ_1 : the angle of the main satellite with respect to the star

 θ_2 : satellite attitude

SPEC:

- a transient settling time of 20 sec
- an overshoot of no more than 15 %

- (STEP 2.) Select sensors
 - Star tracker to obtain θ_2
 - Rate gyto to have θ_2
 - (STEP 3.) Select actuators
 - Cold-gas jets as being fast and adequately

(STEP 4.) Make a linear model

$$J_1 v_1 + v(v_1 - v_2) + \kappa(v_1 - v_2) - I$$

$$J_2 \ddot{\theta}_1 + b(\dot{\theta}_2 - \dot{\theta}_1) + k(\theta_2 - \theta_1) = 0$$

(STEP 4.) Make a linear model
$$J_1\ddot{\theta}_1+b(\dot{\theta}_1-\dot{\theta}_2)+k(\theta_1-\theta_2)=T_c$$

SPEC:

$$\theta_2$$

$$\theta_2$$
 $b = k$
 θ_1

$$G(s) = \frac{\Theta_2(s)}{T_c(s)} = \frac{10bs + 10k}{s^2(s^2 + 11bs + 11k)} \quad (J_1 = 1, J_2 = 0.1)$$

$$J_1\ddot{\theta}_1 + b(\dot{\theta}_1 - \dot{\theta}_2)$$

accurate

(STEP 5.) Try a lead-lag or P/D controller

proportional gain root locus

(b)

40

20

-20

-60

-80

-40 €

(STEP 5.) Try a lead-lag or P/D controller

- First ignore the resonance and generate a design that would be acceptable for the rigid body alone
- Take the process transfer function to be $1/s^2$

Consider the PD control, $D_c(s) = K(sT_D + 1)$

- The response objective is $\omega_n = 0.5 (rad/sec)$,

• For $D_{c1}(s) = 0.25(2s+1)$

$$\zeta = 0.5$$

Unstable

100

10

0.1

- (STEP 5.) Try a lead-lag or P/D controller
 - Lower the gain for $D_{c2}(s) = 0.001(30s + 1)$

- (STEP 5.) Try a lead-lag or P/D controller
 - Consider a notch filter

$$D_{c3}(s) = 0.25(2s+1)\frac{(s/09)^2 + 1}{[(s/25) + 1]^2}$$

- (STEP 5.) Try a lead-lag or P/D controller
 - Response of $KD_{c3}(s)G(s)$

(STEP 5.) Try a lead-lag or P/D controller

• Closed-loop response $(\theta_2(0) = 0.2)$

- (STEP 6) Evaluate/verify the plant
 - Moving the sensor from a noncollocated position to one collocated with the actuator

$$G_0(s) = \frac{\Theta_1(s)}{T_c(s)} = \frac{(s + 0.018 \pm 0.954j)}{s^2(s + 0.02 \pm j)}$$

• For $D_{c5}(s) = 0.25(2s+1)$, closed-loop response of $D_{c5}(s)G_0(s)$

- (STEP 7) Try an optimal design (State space design)
- (STEP 8) Build a computer model, and compute (simulate) the performance of the design
- (STEP 9) Build a prototype

Example 10.2 Lateral and Longitudinal Control of a Boeing 747^{CS-7A-ControlDesign - 21} Feng-Li Lian © 2020

Velocity vector

Equations of motion: Boeing 747

$$m(\dot{U}+qW-rV=X-mg\sin\theta+\kappa T\cos\theta)$$

$$m(\dot{V}+rU-pW=Y+mg\cos\theta\sin\phi)$$

$$m(\dot{W}+pV-qU=Z+mg\cos\theta\cos\phi-\kappa T\sin\theta)$$

$$I_{x}\dot{p}+I_{xz}\dot{r}+(I_{z}-I_{y})qr+I_{xz}qp=L$$

$$x,y,z=\text{position coordinates}$$

$$\phi=\text{roll angle}$$

u, v, w = velocity coordinates

p = roll rate

q = pitch rate

r = yaw rate

 θ = pitch angle

 $\psi = \text{yaw angle}$ $\beta = \text{side-slip angle}$

 α = angle of attack

 $I_y \dot{q} + (I_x - I_z)pr + I_{xz}(r^2 - p^2) = M$

 $I_z\dot{r} + +(I_y - I_x)qp - I_{xz}qr = N$

Linearization of the system:

$$\dot{U} = \dot{V} = \dot{W} = \dot{p} = \dot{q} = \dot{r} = 0$$

 $p_o = q_o = r_o = 0$ (reference angular velocities)

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 Feng-Li Lian © 2020

Yaw damper

Linearized lateral motion equation

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \\ \dot{p} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} Y_v & -U_o & V_o & g_o \cos \theta_o \\ N_v & N_r & N_p & 0 \\ L_v & L_r & L_p & 0 \\ 0 & \tan \theta_o & 1 & 0 \end{bmatrix} \begin{bmatrix} \beta \\ r \\ p \\ \phi \end{bmatrix} + \begin{bmatrix} Y_{\delta r} & Y_{\delta a} \\ N_{\delta r} & N_{\delta a} \\ L_{\delta r} & L_{\delta a} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta r \\ \delta a \end{bmatrix}$$

(Input: δr rudder, output: r yaw rate)

- (STEP 1.) Understand the process and its performance specifications
 - Modidfy the the natural dynamics so that the plane is acceptable for the pilot to fly
 - $\omega_n \leq$ 0.5 and damping ratio of $\zeta \geq$ 0.5 approximately

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 Feng-Li Lian © 2020

- (STEP 2) Select sensors
 - Measure the angular velocity (gyro)
- (STEP 3) Select actuators
 - Rudder
- (STEP 4) Make a linear model

$$G(s) = \frac{r(s)}{\delta r(s)} = \frac{-0.475(s + 0.498)(s + 0.012 \pm 0.488j)}{(s + 0.0073)(s + 0.563)(s + 0.033 \pm 0.947j)}$$

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 S-7A-ControlDesign - 24 Feng-Li Lian © 2020

- (STEP 5) Try a lead-lag or PID design
 - For a proportional feedback

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 S-7A-ControlDesign - 25 Feng-Li Lian © 2020

- (STEP 5) Try a lead-lag or PID design
 - Add $H(s) = \frac{s}{1+s/\tau}$

(b) Copyright ©2015 Pearson Education, All Rights Reserved

Yaw damper: (a) functional block diagram; (b) block diagram for analysis

(STEP 5) Try a lead-lag or PID design

• With $\tau = 3$

- (STEP 5) Try a lead-lag or PID design
 - With $\tau = 3$

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 Feng-Li Lian © 2020

Altitude hold autopilot

- (STEP 1.) Understand the process and its performance specifications
 - The design should provide the kind of ride that pilot and passenger like
 - Damping ratio $\zeta \approx 0.5$
 - The natural frequency should be "much" less than $\omega_n=1$
 - (STEP 2) Select sensors
 - Measure the altitude
- (STEP 3) Select actuators
 - Elevator δe

u, v, w = velocity coordinates

p = roll rate

q = pitch rate

r = yaw rate

 θ = pitch angle

 $\psi = \text{yaw angle}$

 β = side-slip angle α = angle of attack Example 10.2 Lateral and Longitudinal Control of a Boeing 747 S-7A-ControlDesign - 29 Feng-Li Lian © 2020

(STEP 4) Make a linear model

$$\frac{h(s)}{\delta e(s)} = \frac{32.7(s + 0.0045)(s + 5.645)(s - 5.61)}{s(s + 0.003 \pm 0.0098j)(s + 0.6463 \pm 1.1211j)}$$

(STEP 5) Try a lead-lag or PID design

Copyright ©2015 Pearson Education, All Rights Reserved

Example 10.2 Lateral and Longitudinal Control of a Boeing 747 Feng-Li Lian © 2020

(STEP 5) Try a lead-lag or PID design

$$\frac{h(s)}{\delta e(s)} = \frac{2.08s(s + 0.0105)(s + 0.596)}{(s + 0.003 \pm 0.0098j)(s + 0.646 \pm 1.1211j)}$$
Inner loop

if $k_q = 1$, poles are $-0.0039 \pm 0.0067 j, -1.683 \pm 0.277 j$

Compensation

Aircraft

- (STEP 5) Try a lead-lag or PID design
 - root locus with feedback of h and derivative of h

