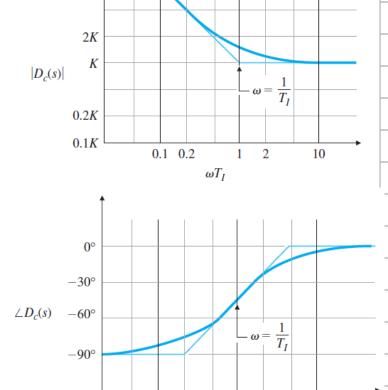
Spring 2020

控制系統 Control Systems

Unit 6J PI Compensation and Lag Compensation

Feng-Li Lian & Ming-Li Chiang

NTU-EE

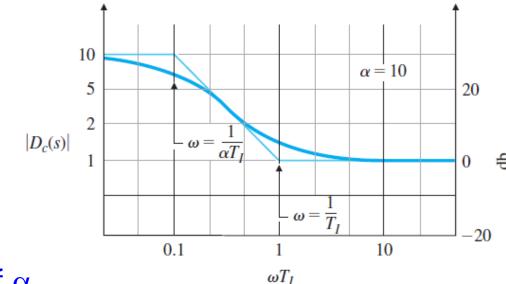

Mar 2020 – Jul 2020

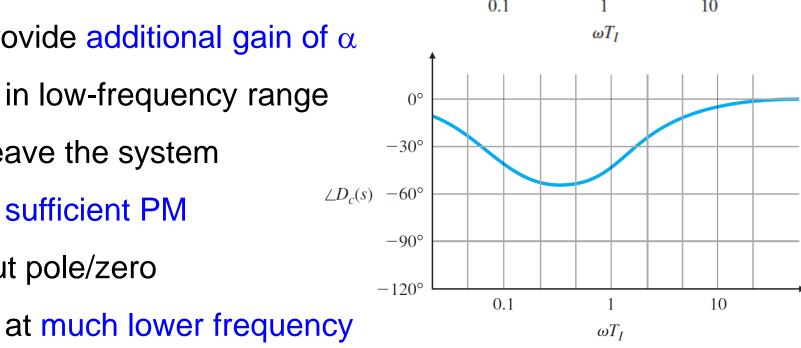
10

In many problems,

- it is important to keep the bandwidth low and also to reduce the steady-state error
- For this purpose,
 a PI Controller
 or Lag Compensator is useful
- PI Controller:

$$egin{aligned} D_c(s) &= K \left(1 + rac{1}{T_I} rac{1}{s}
ight) \ &= rac{K}{s} \left(s + rac{1}{T_I}
ight) \end{aligned}$$


0.1 0.2


 ωT_I

10K

$$D_c(s) = \alpha \frac{T_I s + 1}{\alpha T_I s + 1}, \quad \alpha > 1$$

- Low frequency:
 - Amplitude: increase
 - Phase: decrease
- Features:
 - Provide additional gain of α
 - Leave the system
 - sufficient PM
 - Put pole/zero

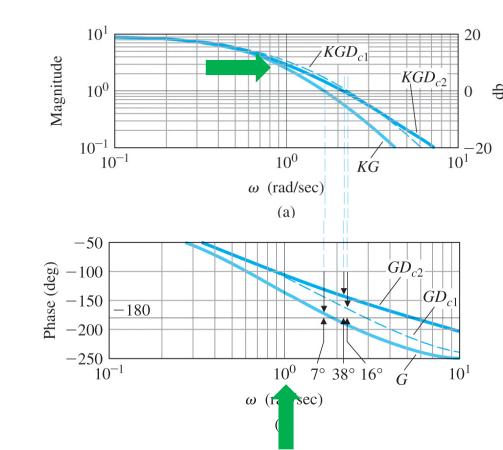
- 1. Determine OL gain K that meet the PM requirements
- Draw the Bode Plot of the uncompensated system
 with crossover frequency from Step 1, and
 evaluate the low-frequency gain
- 3. Determine α to meet low-frequency gain error requirement

- 4. Choose the corner frequency $\omega = 1/T_I$, (the zero) to be one octave to one decade below new ω_c
- 5. The other corner frequency $\omega = 1/\alpha T_L$, (the pole)

6. Iterate on the design. Adjust poles/zeros/gain.

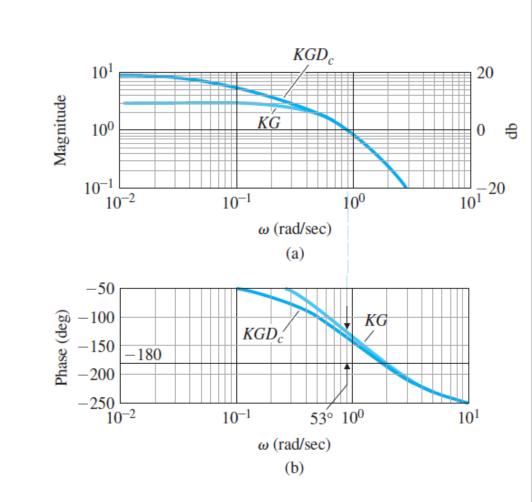
 Example 6.18: Lag-Compensation Design for Temperature Control System

$$K G(s) = \frac{K}{(\frac{s}{0.5} + 1)(\frac{s}{1} + 1)(\frac{s}{2} + 1)}$$


•
$$K_p = 9$$

■ $PM > 40^{o}$

- **-** (1)
 - In Ex. 6.16, K = 9
- •

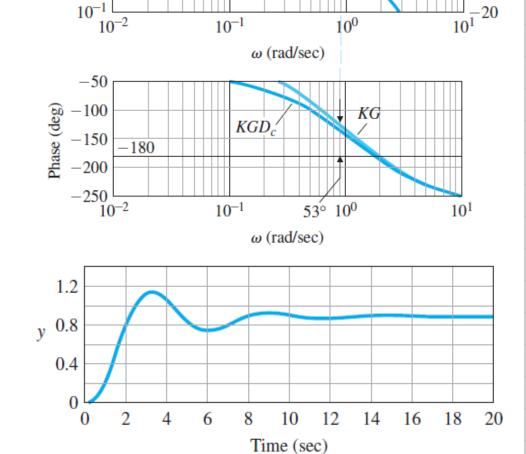

• For PM $> 40^{\circ}$,

- at $\omega_c \sim 1$
- Mag ~= 3
- K = 3

Examples

- Example 6.18: Lag-Compensation Design for Temperature Control System
- **(2)**
- K = 3
- PM ~= 50°
- Low-frequency gain = 3
- **(3)**
- The low-frequency gain should be raised by a factor of 3,
- \rightarrow the lag compensation needs to have $\alpha = 3$

20


Example 6.18: Lag-Compensation Design for Temperature Control System KGD_c **4**

 10^{1}

 10^{0}

Magnitude

- \blacksquare Zero: 1 / 5 = 0.2
- $\rightarrow 1/T_I = 0.2$, or $T_I = 5$
- **(5)** \bullet $\omega = 1/\alpha T_I = 1/(3x5) = 1/15$
 - $D_c(s) = \alpha \frac{5 s + 1}{15 s + 1}$
- $K D_I(0)G(0) = 3K = 9$
- $K_p = 9$, $PM = 44^o$

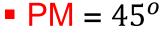
KĠ

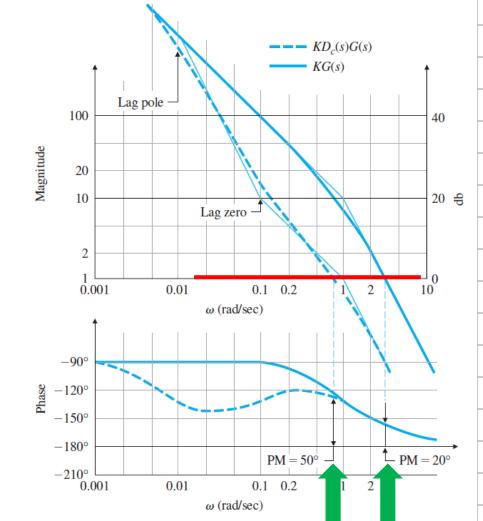
Example 6.19: Lag Compensation for the DC Motor

$$G(s) = \frac{1}{s(s+1)}$$

■ PM =
$$20^o$$
 at $\omega_c \sim 3$

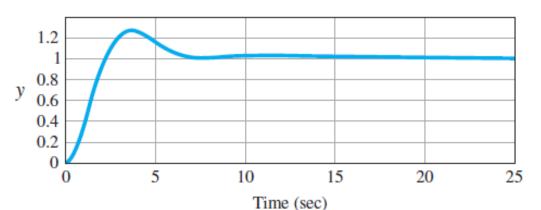
Select break points


$$\checkmark \omega_c$$
 is lowered

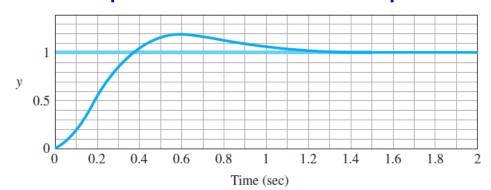

✓ more favorable PM results

➤ Lag pole = 0.01

✓
$$PM = 50^{\circ}$$



Example 6.19: Lag Compensation for the DC Motor


$$G(s) = \frac{1}{s(s+1)}$$

- Error constant: $K_v = 10$
- $-PM = 45^{\circ}$

- No steady-state error
 - ✓ a Type 1 system
- Settling time ~= 25 sec
- Rise time ~= 2 sec

Example 6.15: Lead Compensation

