Spring 2020

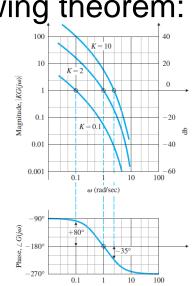
控制系統 Control Systems

Unit 6G Bode's Gain-Phase Relationship

Feng-Li Lian & Ming-Li Chiang NTU-EE Mar 2020 – Jul 2020

Bode's Theorem

- One of Bode's important contributions is the following theorem:
- For any stable minimum-phase system (no RHP zeros/poles),
- The phase of G(jw) is uniquely related to the magnitude of G(jw)



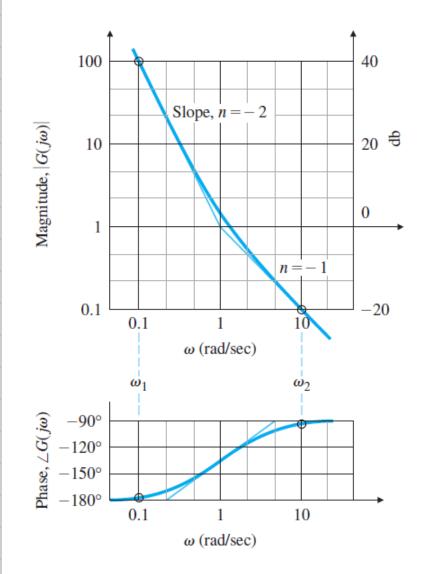
When the slope of |G(jw)| versus
on a log-log scale persists at a constant value for approximately a decade of frequency, the relationship is particularly simple and is given by:

 $\angle G(jw) \approx n \times 90^{\circ}$

n: the slope of |G(jw)| in units of decade

of amplitude per decade of frequency

Bode's Theorem



Slope:

- At $\omega_1 = 0.1$, (n = -2) At $\omega_2 = 10$, (n = -1)

Phase:

> • At $\omega_1 = 0.1$, -180°

• At
$$\omega_2 = 10$$
, -90°

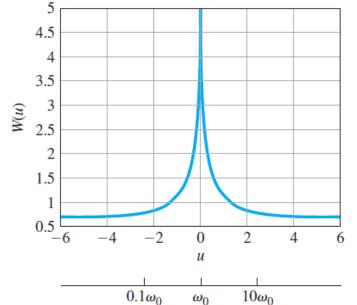
An exact statement of the Bode Gain-Phase Theorem is:

$$\angle G(jw) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left(\frac{dM}{du}\right) W(u) du$$
 in radians

Where

- M = log magnitude = ln |G(jw)|
- \boldsymbol{u} = normalized frequency = ln(ω / ω_0)
- dM/du ~= slope n
- W(u) = weighting function = ln(coth|u|/2)

$$W(u) \approx \frac{\pi^2}{2} \,\delta(u)$$



- But, usually use
- When | KG(jw) | = 1

$$egin{array}{lll} & \mathcal{G}(jw) \ pprox \ n \ imes \ 90^o \ \ \mathcal{G}(jw) \ pprox \ -90^o \ \ ext{if} \ n=-1 \ \ \mathcal{G}(jw) \ pprox \ -180^o \ \ ext{if} \ n=-2 \end{array}$$

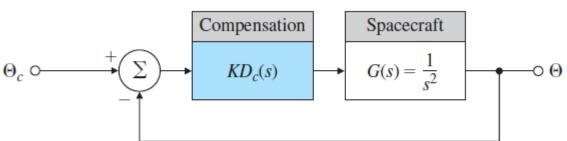
- For stability, we want:
 - $\angle G(jw) > -180^{\circ}$ for PM to be > 0
- Therefore, adjust the |KG(jw)| curve
- So that it has a slope of -1 at the crossover frequency ω_c
- If the slope = -1 for a decade above/below ω_c , then PM ~= 90^o
- However, to ensure a reasonable PM,

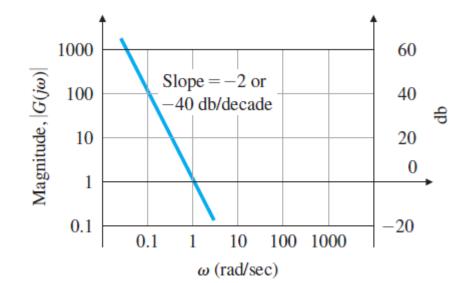
it is usually necessary only to insist that

a -1 slope persist for a decade in frequency centered at ω_c

- A very simple design criterion:
- Adjust the slope of the magnitude curve |KG(jw)|
- So that it crosses over magnitude 1 with a slope of -1 for a decade around ω_c
- This criterion will usually be sufficient to provide an acceptable PM and adequate system damping.
- To achieve the desired speed of response,
- the system gain is adjusted
- so that the crossover point is at a frequency that will yield the desired bandwidth or speed of response.
- Natural Freq $\omega_n \sim$ = Bandwidth $\omega_{BW} \sim$ = Crossover Freq ω_c

Example 6.14: Use of Simple Design Criterion for Spacecraft Attitude Control



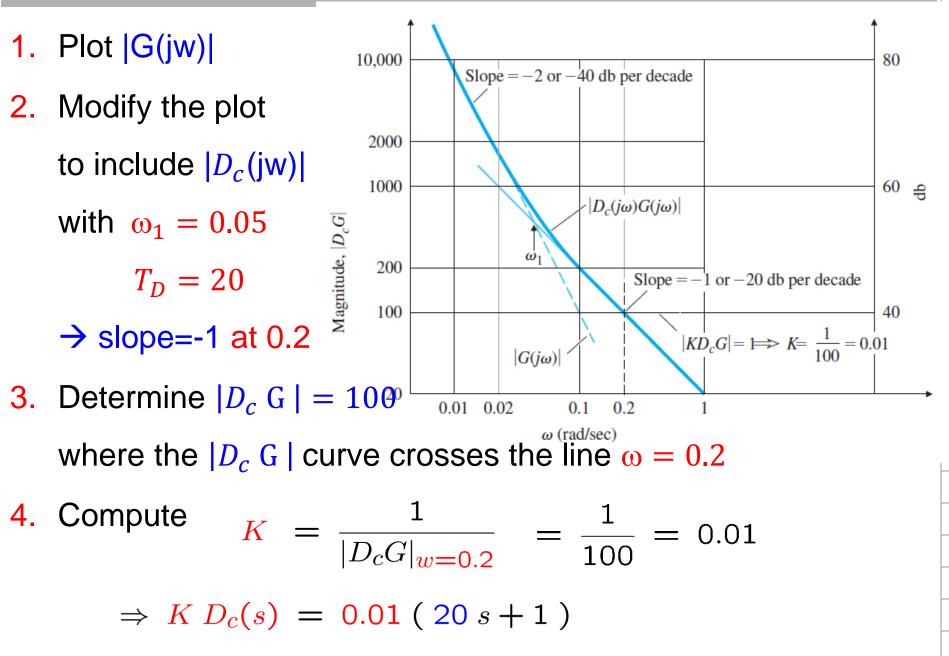


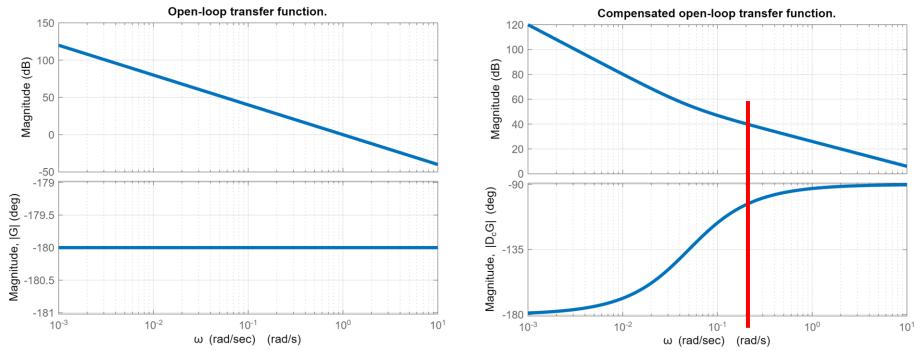
 $K D_c(s) = K (T_D s + 1)$

Adjust K

- to provide desired bandwidth
- Adjust break point $\omega_1 = 1/T_D$
- to provide the -1 slope at the crossover frequency

0.2 rad/sec





- The closed-loop frequency-response magnitude *T(jw)* and the sensitivity function *S(jw)*
- Desired Bandwidth = 0.2 rad/sec
- Disturbance Rejection (-3db) at 0.15 rad/sec

