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= For most systems, \/(
an increasing gain eventually causes instability — <
= |In very early days of feedback control design, - 2/]\
this relationship between gain and stability margins
was assumed to be universal. . N .
= However, designers found occasionally that \l\\\l\\\
the relationship reversed itself; ]\‘\0
= That is, the amplifier would become unstable \ )
when the gain was decreased. O]

w (rad/sec)

= The confusion motivated Harry Nyquist of Bell Tele Lab in 1932
* The Nyquist Stability Criterion
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= Nyquist Stabllity Criterion:

= Based on the Argument Principle in complex variable theory.

= Relate OL frequency response R
to the number of CL poles in the RHP | \l\\\;\ °
BRI 7.
= Determine stability \\‘\\\“
from frequency response of a complex system____
= The magnitude curve crosses 1 several times i\L |

d/sec)

and/or the phase curve crosses 180° several times.
= Deal with  (a) OL unstable systems,
(b) non-minimum-phase systems,

(c) systems with pure delays
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P Hils) Hi(so) = ¥ = [P]ed®

" %0 argument: o = 01 + 63 — (¢1 + ¢o)
= Contour Evaluation

¢ Im(s) tIm[H(5)] H1(s0)

H,(s)

Re[H,(5)]

= If no poles/zeros within €4

(a) = Not net change of 360° o)
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" H2(s) Hy(so) = ¥ = [T]el®

" %0 argument: o = 01 + 63 — (¢1 + ¢o)
= Contour Evaluation

4 Im(s) $ Im[H>(s5)] H>(s0)

Eﬂ HE{S}

Re[HA( 53]

= One poles/zeros within C4

() = Net change of —360° (d)



T

he Argument Principle

4 Im(s)
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+ Im[H,(s)] Hy(s0)

H(s)

(a)

$ Im(s)

Re[H,(5)]

= If no poles/zeros w|ithin Cq
= Not net change of 360° )
tIm[Hy(s)] H>(sp)

30 H 2(s)

(c)

Re[H,(s)]

= One poles/zeros within €4

= Net change of —360° (d)




The Argument Principle

= The essence of the Argument Principle

= A contour map of a complex function

will encircle the origin Z — P times,

= where

and

of the function inside the contour.

Z 1S the number of zeros

P is the number of poles

= For controller design,

let the €4 contour encircle entire RHP,

CS6E-NyquistCriterion- 7
Feng-Li Lian © 2020

Contour at

~” infinity
N

where a pole would cause an unstable system.
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R o> KG(s) y T(s) = Y (s) _ K G(s)
— R(s) 1 + K G(s)
= CL roots: 1 4+ KG(s) = 0

= The contour evaluation for 1 + KG(s) = 0
= - Encircling the origin!
= Equivalently, the contour evaluation for K G(s) = 0

= - Encircling -1

[KG{S)]:\'=C| |

A Im

[1+KG(s)]s—c, I

= Nyquist Plot

= Polar Plot w J o ; \*?J Re
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o b(s) ~a(s) + K b(s)
1 + K G(s) —1—|-Ka(8) = (o)
poles of 1 + K G(s) = poles of G(s)

= A clockwise contour €4 enclosing a zero of 1 + KG(S)
result in KG(s) encircling the -1 point in a clockwise direction
= Likewise, C4 enclose a pole of 1 + KG(s)
(if there is an unstable OL pole)
there will be a counterclockwise encirclement of the -1 point.
= Furthermore, two poles or zeros are in the RHP,
KG(s) will encircle the -1 point twice, and so on.
= Net number of CW encirclements N = Z - P
Z = zeros in RHP, P =polesin RHP



Procedure for Determining Nyquist Stability

Procedure for Determining Nyquist Stability

1.

< 50)

Plot KG(s) for —joo < s < + joo. Do this by first evaluating
KG(jw) for w = 0 to wy,, where wy, is so large that the magnitude
of KG(jw) is negligibly small for @ > wy, then reflecting the
image about the real axis and adding it to the preceding image.
The magnitude of KG(jw) will be small at high frequencies for
any physical system. The Nyquist plot will always be symmetric
with respect to the real axis. The plot is normally created by the
NYQUIST Matlab function.

. Evaluate the number of clockwise encirclements of —1. and call

that number N. Do this by drawing a straight line in any direc-
tion from —1 to co. Then count the net number of left-to-right
crossings of the straight line by KG(s). If encirclements are in
the counterclockwise direction, N is negative.

. Determine the number of unstable (RHP) poles of G(s), and

call that number P.
Calculate the number of unstable closed-loop roots Z:

Z=N+P. (6.28)
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Examples
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= Example 6.8: Nyquist Plot for a Second-Order System

Magnitude, |G(jew)|

Phase, / G(jw)

oY

G(s) for s =—jooto 0

+ Imi(s)
3 |
2 |
Root
locus 1 +
| | | | >
—2—1 1 2 Rel(s)
Root -1~
locus

R + K 1
» 7
(s + 1)
10.0 20 4 Im[G(5)]
0
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(b)

G(s) for s =0 to +joo

w = logspace(-2,3,100);
num = 1;
den=[121];

[re,im] = nyquist( num, den, w );
plot( re, Im, re, -im);
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= Example 6.8: Nyquist Plot for a Second-Order System

Phase, / G(jw)

nitude, |(}(jw)|

Mag
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¢ Imis)
+ 1 3
R KT "G6r1) oY s
_ oot
locus 1 —
| | | | .
10.0 20 4 Im[G(s)] —2-1 I 2 Re()
10 0 G(s) for s =—jooto 0 E;?:E: -
. 5 ﬁ\\c\‘ 05 % . L
0.1 \\ _
0.01 - | /“’=°°"|5 w=0 h
b —0.5 D 0.5 10JA Re[C(sJi
0001 0.1 1 10 100 /\wj
w (rad/sec) 05 \ <
0° ¢ G(s) for s =0 to +joo
“\{\ = N = 0: not encircle -1
c = P = 0: no poles of G(s) in RHP
N =/Z/=N+P—>272=0,
N2 4 no unstable roots for K =1
0.1 I 10 100

w (rad/sec)

(b)

= K > (0 also holds
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= Example 6.8: Nyquist Plot for a Second-Order System

= Another viewpoint:

« 1+ KG(s) for the origin point
. KG(s) for the -1 point
. G(S) for the -1/K point

4 Im[G{s}]

G(s) fors=—jecto 0

0.5

= No encirclement of G(s) on -1/K

!
05 D

forany K> 0

05 = Hence, K > 0 Is stable

G(s) for s =0 to +joo



Magnitude, |G|

Phase, /1 G

Examples

= Example 6.9: Nyquist Plot for a Third-Order System

R
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(b)

o
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= Example 6.9: Nyquist Plot for a Third-Order System

+
R@—?—K

1

| s(s+ 1)2

w=logspace(-2,3,100);

num=1;

den = conv([1 0],[1 2 1));

[re,im] = nyquist(num,den,w);

plot(re,im,re,-im,'LineWidth',2);

ii=[11 21 47 61];

plot(re(ii),im(ii),™");
plot(-.5,0,™)

Im[G(s)]

UK, Re|G(s)]



= Example 6.10: Nyquist Plot for an Open-Loop Unstable System

Magnitude, |G|

Phase, / G

E

xamples

t Im(s)
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= Example 6.10: Nyquist Plot for an Open-Loop Unstable System

+ s+ 1
R \ K (%0 B ]) oY

c 4+ Im|[G(s)]
-
\/w+\f10

w = logspace(-3,3,100); N N
~1/K,

num = [1 ]_]’ b ©=0

den = conv([1 0],[0.1 -1]); e

[re,im] = nyquist( num, den, w ); @

plot( re, im, re, -im);
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= Example 6.11: Nyquist Plot Characteristics

. s2+3
R Q—(EP‘ KG(s) T—O Y G(S) =
b (s 4+ 1)2

= Never cross negative-real axis

= Stable forK >0

w = logspace(-3,3,100);

num=[10 3];
den = conv([1 1],[1 1]);

[maginary axis

[re,im] = nyquist( num, den, w);
plot( re, im, re, -im );

B3 51050 05 1 15 2 25 3 SysG = (8”2 + 3)/(s+1)"2;
Real axis nyquist( sysG );




