Spring 2020

控制系統 Control Systems

Unit 6C Non-Minimum Phase and Steady-State Errors

Feng-Li Lian & Ming-Li Chiang NTU-EE Mar 2020 – Jul 2020

Non-Minimum Phase

CS6C-NMPhaSSErr - 3 Feng-Li Lian © 2020

In Section 4.2,

Errors as a	Function	of System	Type
E11010 40 4	- i anceion	or system	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Type Input	Step (position)	Ramp (velocity)	Parabola (acceleration)
Туре О	$\frac{1}{1+K_p}$	∞	∞
Type 1	0	$\frac{1}{K_V}$	∞
Type 2	0	0	$\frac{1}{K_q}$

- As the gain of the open-loop transfer function increases,
- Steady-State Error of a feedback system decreases.
- In Section 6.1.1, $\frac{K G(jw) = K_0 (jw)^n \frac{(jw\tau_1 + 1) (jw\tau_2 + 1) \cdots}{(jw\tau_n + 1) (jw\tau_1 + 1) \cdots}$
 - At very low frequencies, OL TF is approximated by

 $K G(jw) \approx K_0 (jw)^n$

- Larger the magnitude on low-frequency asymptote,
- Lower steady-state errors

Steady-State Errors

CS6C-NMPhaSSErr - 5 Feng-Li Lian © 2020

$$K G(jw) \approx K_0 (jw)^n$$

For n = 0, a Type 0 system,

$$e_{ss} = \frac{1}{1 + K_p}$$

Errors as a Function of System Type

Type Input	Step (position)	Ramp (velocity)	Parabola (acceleration)
Туре О	$\frac{1}{1+K_p}$	∞	∞
Type 1	0	$\frac{1}{K_V}$	∞
Type 2	0	0	$\frac{1}{K_a}$

For n = -1, a Type 1 system,

- The low-frequency asymptote has a slope of -1.
- The gain = K_o/ω and the velocity-error constant is:

$$K_v = K_o$$

- For a unity-feedback system with a unit-ramp input,
- The steady-state error is:

$$e_{ss} = \frac{1}{K_v}$$

- The easiest way of determining K_{ν} in a Type 1 system
- is to read the magnitude of the low-frequency asymptote at $\omega = 1$ rad/sec,

• because this asymptote is $A(\omega) = K_v / \omega$.

- In some cases, the lowest-frequency break point will be below $\omega = 1$ rad/sec;
- Therefore, the asymptote needs to extend to $\omega = 1$ rad/sec in order to read K_{ν} directly.

Steady-State Errors

