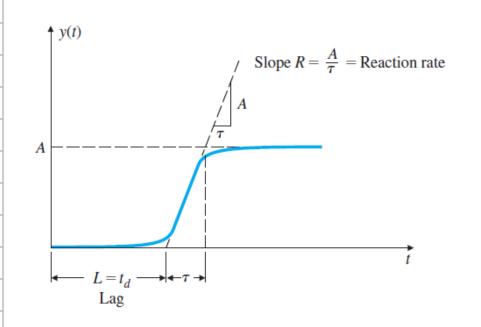
Spring 2020

控制系統 Control Systems


Unit 44
Ziegler–Nichols Tuning

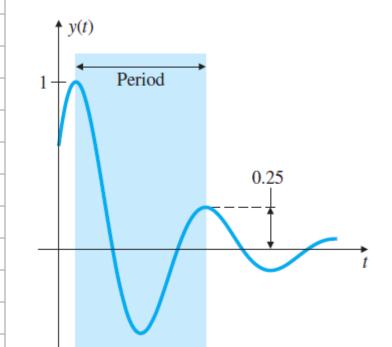
Feng-Li Lian & Ming-Li Chiang

NTU-EE

Mar 2020 – Jul 2020

- Callender, Hartree, Porter (1936) proposed a design for PID controllers
 by specifying satisfactory values for the terms
 based on estimates of the plant parameters
 that an operating engineer could make from experiments on the process.
- Extended by Ziegler and Nichols (1942, 1943) who recognized that the step response of a large number of process control systems exhibit a process reaction curve, generated from experimental step response data.

$$\frac{Y(s)}{U(s)} = \frac{A e^{-s t_d}}{\tau s + 1}$$


 A first-order system with a time delay (lag)

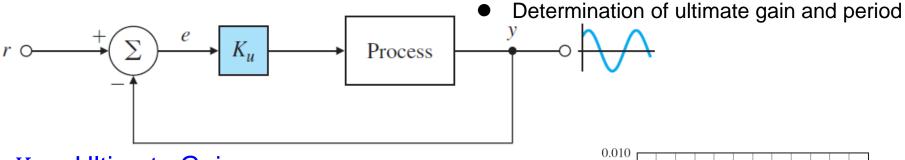
- Method 1:
 - In a closed-loop step response transient with a decay ratio of 0.25

PID

$$D_c(s) = k_P \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Quarter decay ratio

$D_c(s) = k_P(1 + 1/T_I s + T_D s), \text{ for a Decay Ratio of 0.25}$	
Type of Controller	Optimum Gain
P	$k_P = 1/RL$
PI	$\begin{cases} k_P = 0.9/RL \\ T_I = L/0.3 \end{cases}$

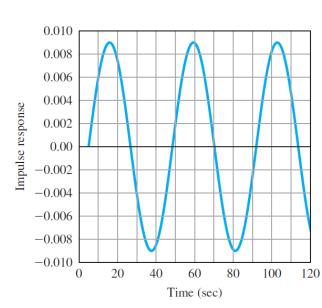

 $k_P = 1.2/RL$ $T_I = 2L$ $T_D = 0.5L$

7igaler_Nichols Tuning for the Regulator

Method 2: Ultimate Sensitivity Method:

Based on evaluating the amplitude and frequency

of the oscillations of the system at the limit of stability rather than on taking a step response.

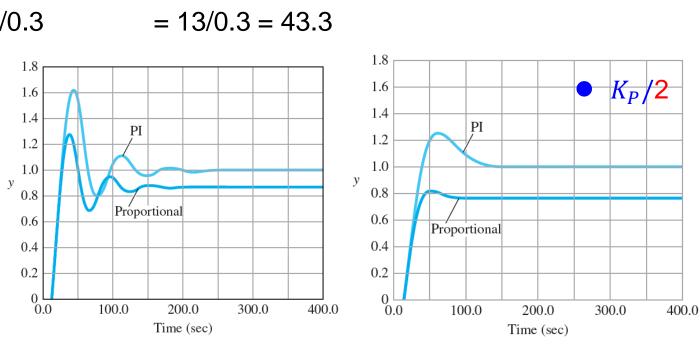


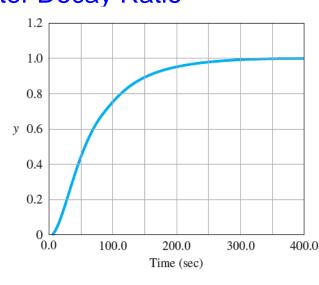
K₁₁: Ultimate Gain

Ultimate Period

Ziegler-Nichols Tuning for the Regulator

$D_c(s) = k_P(1 + 1/T_I s + T_D s)$, Based on the Ultimate Sensitivity Method	
Type of Controller	Optimum Gain
Р	$k_P = 0.5K_U$
PI	$\begin{cases} k_P = 0.45K_U \\ T_I = \frac{P_U}{1.2} \end{cases}$
PID	$\begin{cases} k_P = 1.6K_u \\ T_I = 0.5P_u \\ T_D = 0.125P_u \end{cases}$

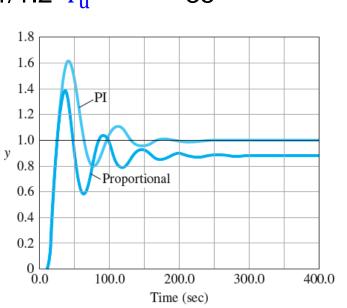

Examples

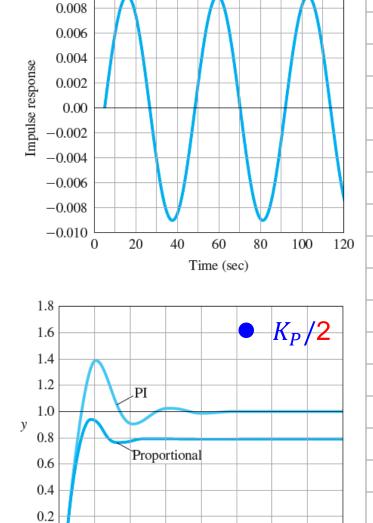

P:

 K_{P}

CS44-ZieglerNichols - 5 Feng-Li Lian © 2020

- Example 4.8: Tuning of a Heat Exchanger: Quarter Decay Ratio
- The measured process reaction curve
- Maximum slope:
 R = 1/90
- Time delay: L = 13 sec
- = 1/RL= 90/13 = 6.92
- PI: K_P = 0.9/RL= 6.22
- and T₁ = L/0.3




Examples

CS44-ZieglerNichols - 6 Feng-Li Lian © 2020

- Example 4.9: Tuning of a Heat Exchanger: Oscillatory Behavior
- Non-decaying oscillation
- $K_{\rm u}$ = 15.3
- $P_{\rm u} = 42 {\rm sec}$
- P: K_P = 0.5 K_u = 7.65
- PI: K_P = 0.45 K_u = 6.885
- and T_I = 1/1.2 P_u = 35

(a)

0.0

100.0

200.0

Time (sec)

(b)

300.0

400.0