Spring 2020

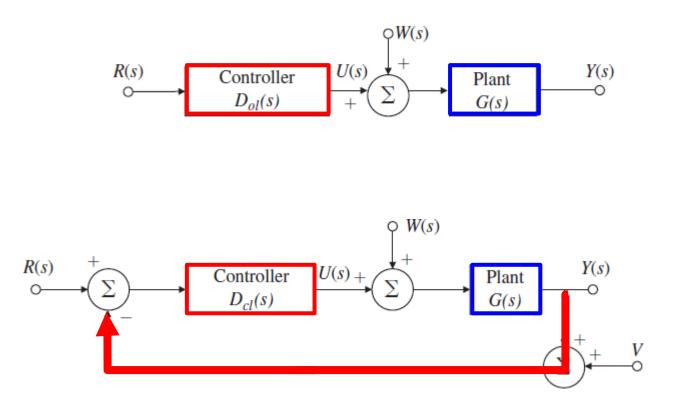
控制系統 Control Systems

Unit 41 The Basic Equations of Control

Feng-Li Lian & Ming-Li Chiang NTU-EE Mar 2020 – Jul 2020

Open-loop system showing

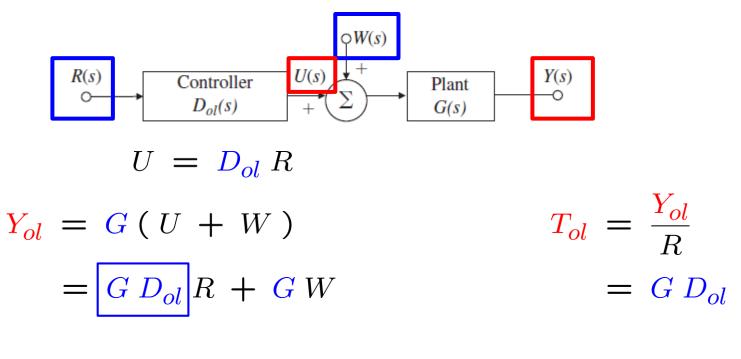
reference, R, control, U, disturbance, W, and output Y



Closed-loop system showing reference, R, control, U, disturbance, W, output, Y, and sensor noise, V

Open-loop system showing

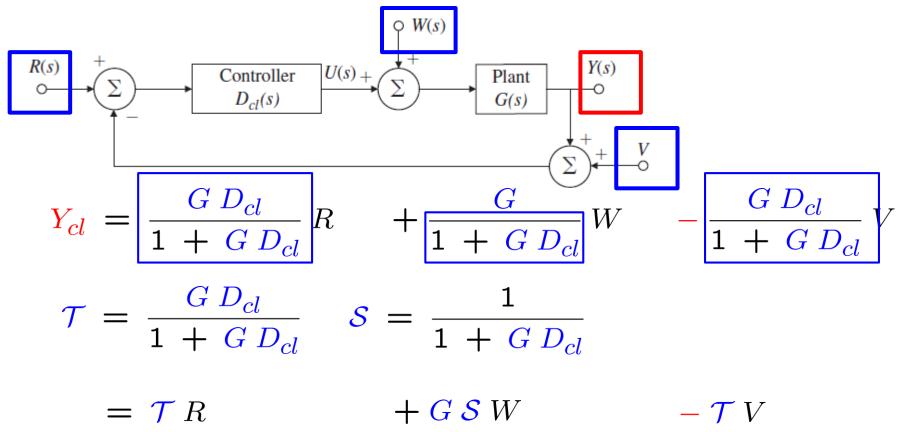
reference, R, control, U, disturbance, W, and output Y

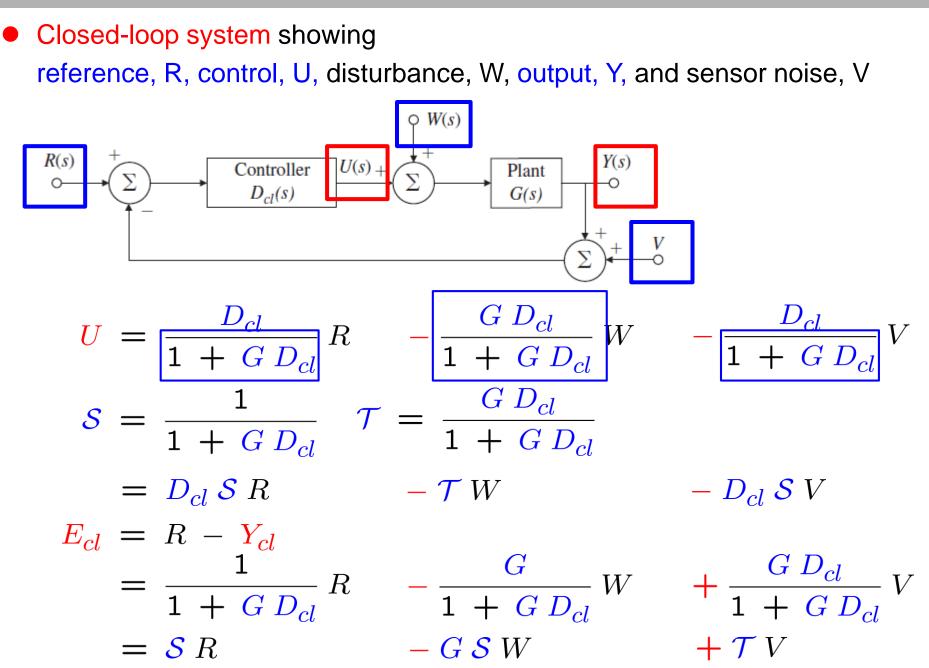


$$E_{ol} = R - Y_{ol}$$

= R - (G D_{ol} R + G W)
= (1 - G D_{ol}) R - G W

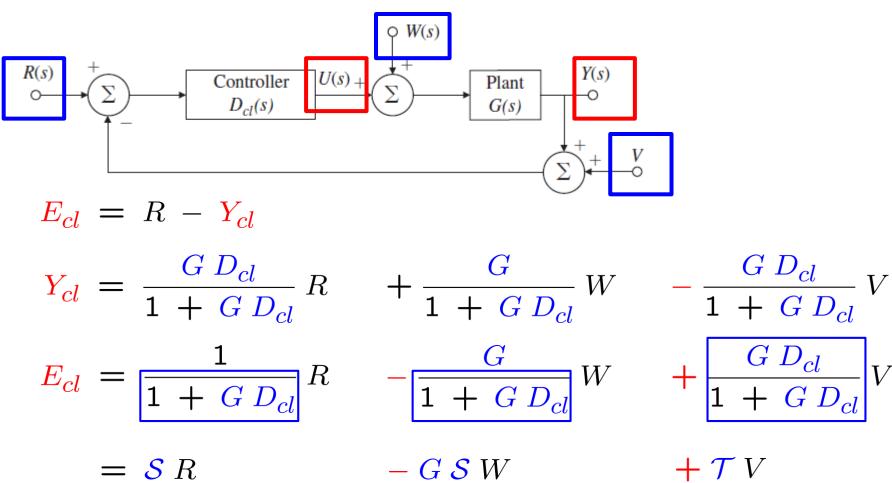
 Closed-loop system showing reference, R, control, U, disturbance, W, output, Y, and sensor noise, V





Closed-loop system showing

reference, R, control, U, disturbance, W, output, Y, and sensor noise, V



 $\mathcal{T} = \frac{G D_{cl}}{1 + G D_{cl}}$

Closed-loop system showing reference, R, control, U, disturbance, W, output, Y, and sensor noise, V W(s)R(s)U(s) + Y(s) Controller Plant $D_{cl}(s)$ G(s) $Y_{\underline{cl}}$ = T $Y_{cl} = \mathcal{T} R + G \mathcal{S} W - \mathcal{T} V$ T_{cl} $U = D_{cl} \mathcal{S} R - \mathcal{T} W - D_{cl} \mathcal{S} V$ $= \frac{G D_{cl}}{1 + G D},$ $E_{cl} = SR - GSW + TV$ $\mathcal{S} = \frac{1}{1 + G D_{cl}}$ S + T = 1**Sensitivity Function**

Complementary Sensitivity Function

Stability:

- All poles of the transfer function must be in the left-hand s-plane.
- Tracking:
 - To cause the output to follow the reference input as closely as possible.

Regulation:

- To keep the error small
 - when the reference is at most a constant set point and disturbances are present.

Sensitivity:

• The change of plant transfer function

affects the change of closed-loop transfer function.

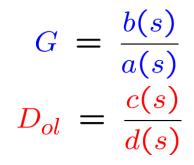
Stability

Stability:

• All poles of the transfer function must be in the left-hand s-plane.

Open-loop system:

$$T_{ol} = \frac{Y_{ol}}{R} = G D_{ol} = \frac{b(s)}{a(s)} \frac{c(s)}{d(s)}$$



• IF unstable poles in plant:

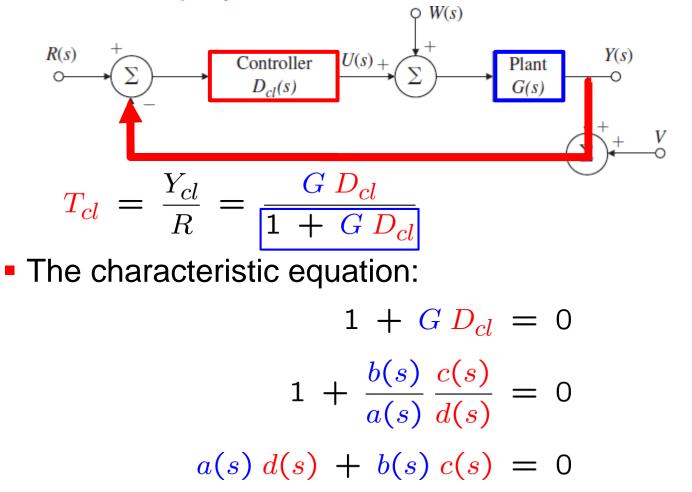
• IF poor zeros in plant:

Stability

 $G = \frac{b(s)}{a(s)}$ $D_{cl} = \frac{c(s)}{c(s)}$

Stability:

- All poles of the transfer function must be in the left-hand s-plane.
- Closed-loop system:

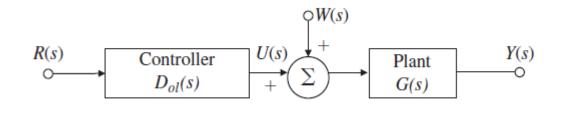


Tracking

Tracking:

• To cause the output to follow the reference input as closely as possible.

Open-loop system:



$$T_{ol} = \frac{Y_{ol}}{R} = G D_{ol} = \frac{b(s)}{a(s)} \frac{c(s)}{d(s)}$$

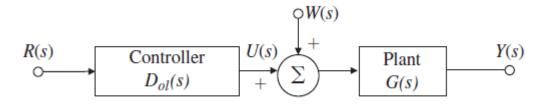
Three caveats:

- Controller transfer function must be proper
- Must not get greedy and request unrealistically fast design
- Pole-zero cancellation cause unacceptable transient

Regulation:

- To keep the error small
 - when the reference is at most a constant set point and disturbances are present.

Open-loop system:



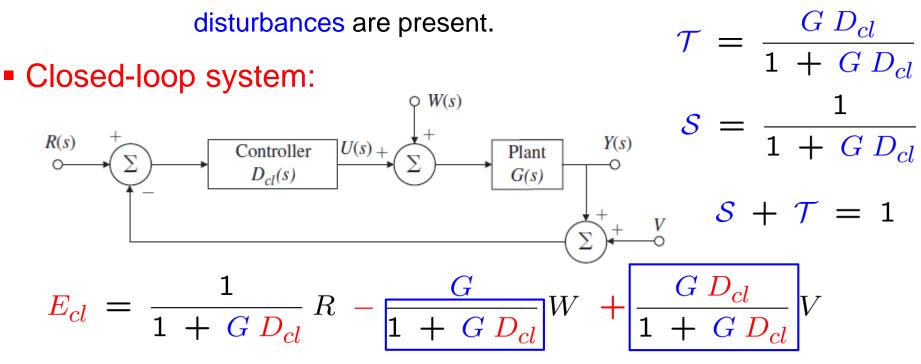
- The controller has no influence at all on the system response to the disturbances,
 - so this structure is useless for regulation

Regulation

Regulation:

To keep the error small

when the reference is at most a constant set point and



The dilemma for the impact from W, V

The resolution is to design controller for different frequencies

Sensitivity

Sensitivity:

• The change of plant transfer function

affects the change of closed-loop transfer function.

The sensitivity of a transfer function to a plant gain is defined as follows (Open-Loop):

$$S_G^T = \frac{\frac{\delta T_{ol}}{T_{ol}}}{\frac{\delta G}{G}} = \frac{G}{T_{ol}} \frac{\delta T_{ol}}{\delta G} = 1$$

$$T_{ol} = \frac{Y_{ol}}{R} = G D_{ol}$$

$$T_{ol} + \delta T_{ol} = D_{ol} (G + \delta G) = D_{ol} G + D_{ol} \delta G$$

$$\frac{\delta T_{ol}}{T_{ol}} = \frac{D_{ol} \delta G}{D_{ol} G} = \frac{\delta G}{G}$$

$$\delta T_{ol} = D_{ol} \delta G$$

Sensitivity

Sensitivity:

• The change of plant transfer function

affects the change of closed-loop transfer function.

For Closed-Loop:

$$T_{cl} = \frac{Y_{cl}}{R} = \frac{G D_{cl}}{1 + G D_{cl}}$$

$$T_{cl} + \delta T_{cl} = \frac{(G + \delta G) D_{cl}}{1 + (G + \delta G) D_{cl}}$$

$$\delta T_{cl} = \frac{dT_{cl}}{dG} \delta G$$

$$S_{G}^{T} = \frac{\frac{\delta T_{cl}}{T_{cl}}}{\frac{\delta G}{G}} = \frac{G}{T_{cl}} \frac{\delta T_{cl}}{\delta G} = \frac{1}{1 + G D_{cl}}$$

$$= \frac{G}{\frac{G D_{cl}}{1 + G D_{cl}}} \frac{(1 + G D_{cl}) D_{cl} - D_{cl} (G D_{cl})}{(1 + G D_{cl})^{2}}$$

Sensitivity

Sensitivity:

• The change of plant transfer function

affects the change of closed-loop transfer function.

- For Open-Loop: $S_G^T = 1$
- For Closed-Loop: $S_G^T = \frac{1}{1 + G D_{cl}}$
- A major advantage of feedback
 - In feedback control,

the error in the overall transfer function gain is less sensitive to variation in the plant gain by a factor **S** compared to errors in open-loop control gain.

