Spring 2020

控制系統 Control Systems

Unit 27
Flow Models – Heat and Fluid

Feng-Li Lian & Ming-Li Chiang
NTU-EE

Mar 2020 – Jul 2020

Heat flow

$$q = \frac{1}{R}(T_1 - T_2)$$

q = heat-energy flow, joules per second (J/sec)

 $R = \text{thermal resistance}, {}^{\circ}C/J \cdot \text{sec}$ $T = \text{temperature}, {}^{\circ}C$

$$\dot{T} = \frac{1}{C}q$$
, (C: thermal capacity)

Model (Equations for heat flow)

$$\dot{T}_I = \frac{1}{C_I} (\frac{1}{R_1} + \frac{1}{R_2}) (T_O - T_I)$$

 C_I = thermal capacity of air in the room

 $T_I = \text{temperature inside}$

 $R_2, R_1 =$ thermal resistance of room ceiling and wall, respectively

Incompressible Fluid Flow

$$\dot{m} = w_{in} - w_{out}$$

m =fluid mass within a prescribed portion of the system

$$w_{in} = \max$$
 flow rate into the prescribed portion of the system $w_{out} = \max$ flow rate out of the prescribed portion of the system

Model (Equations of Water tank height)

$$\dot{h} = \frac{1}{A\rho}(w_{in} - w_{out})$$

A = area of the tank $\rho =$ density of water

$$h = \frac{m}{A\rho} = \text{height of water}$$

m = mass of water

