Spring 2020

控制系統 Control Systems

Unit 25
Electric Circuit

Feng-Li Lian & Ming-Li Chiang
NTU-EE

Mar 2020 – Jul 2020

CS-25-Electric - 2 Feng-Li Lian © 2020

The basic equations of electric circuits are the Kirchhoff's laws

Inductor

Voltage source

Current source

Symbol

Equation

Kirchhoff's current law (KCL):

The algebraic sum of the currents leaving a node

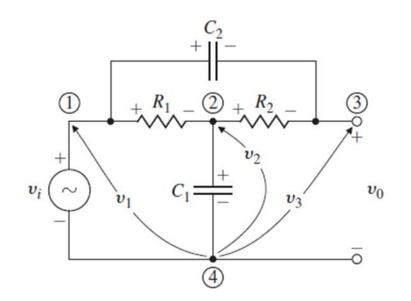
The algebraic sum of the currents entering that node

Kirchhoff's voltage law (KVL):

The algebraic sum of all voltages taken around

a closed path in a circuit is zero

Bridged Tee Circuit

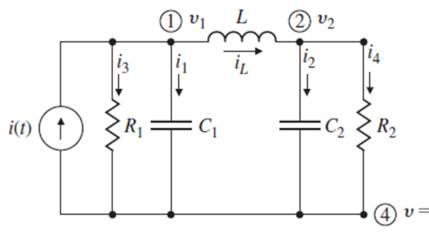


- Model (Equations of Motion)
- Select node 4 as the reference
- v_1, v_2, v_3 as the unknowns
 - By KVL, $v_1 = v_i$

At node 2, the KCL is
$$-\frac{v_1-v_2}{R_1} + \frac{v_2-v_3}{R_2} + C_1 \frac{dv_2}{dt} = 0$$

- At node 3, the KCL is $\frac{v_3 v_2}{R_2} + C_2 \frac{d(v_3 v_1)}{dt} = 0$
- Transfer function from input v_i to output v_o can be derived

Circuit with a current source



Model (Equations of Motion)

 $i(t) = \frac{v_1}{R_1} + C_1 \frac{dv_1}{dt} + i_L,$

- Select node 4 as the reference
- v_1, v_2, i_L as the unknowns
- At node 1, the KCL is $i(t) = i_3 + i_1 + i_L$
- At node 2, the KCL is
- $i_L = i_2 + i_4$

We also have the relations

$$v_1$$
 dv_1

$$i_3 = \frac{v_1}{R_1}, \ i_1 = C_1 \frac{dv_1}{dt}$$

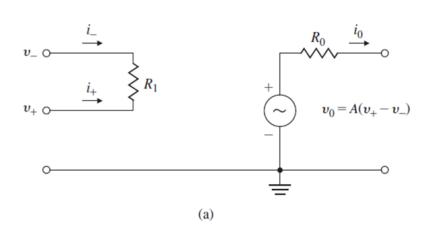
$$i_3 = \frac{v_1}{R_1}, \ i_1 = C_1 \frac{dv_1}{dt},$$

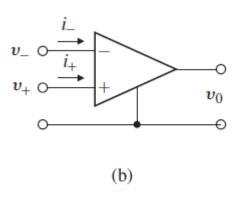
$$i_{1} = C_{2} \frac{dv_{2}}{dt}, i_{4} = \frac{v_{2}}{R_{2}},$$
 $i_{L} = C_{2} \frac{dv_{2}}{dt} + \frac{v_{2}}{R_{2}}$

$$v_1 - v_2 = L \frac{di_L}{dt}, \qquad v_1 = L \frac{di_L}{dt} + v_2$$

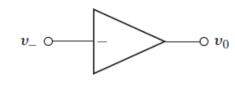
Simplified circuit of op-amp







• Assume connected to ground, $v_+ = 0$

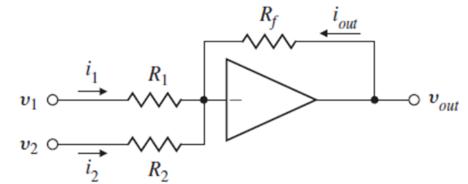


(c)

• Assume ideal op-amp, $R_1 = \infty$, $R_0 = 0$, $A = \infty$

$$i_{+} = i_{-} = 0, \quad v_{+} - v_{-} = 0$$

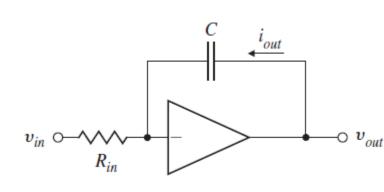
The op-amp summer



- From $v_+ v_- = 0$, we have $v_- = 0$
- Thus, $i_1 = \frac{v_1}{R_1}$, $i_2 = \frac{v_2}{R_2}$, $i_{out} = \frac{v_{out}}{R_f}$
- From $i_+ = i_- = 0$, we have $i_1 + i_2 + i_{out} = 0$, $\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_{out}}{R_4} = 0$
- Model (Equations of Motion)

$$v_{out} = -\left[\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2\right]$$
 (Output is the weighted sum of input voltages)

The op-amp integrator



$$i_{in} + i_{out} = 0$$

$$\frac{v_{in}}{R_{in}} + C\frac{dv_{out}}{dt} = 0$$

Model (Equations of Motion)

$$v_{out} = -\frac{1}{R_{in}C} \int_0^t v_{in}(\tau) d\tau + v_{out}(0)$$

Transfer Function

$$V_{out}(s) = -\frac{1}{s} \frac{V_{in}(s)}{R_{in}C}$$

(Assume zero initial condition)

• Table 2.1 ([Dorf, Bishop 2017])

System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y_{21}
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, <i>Q</i>	Volume, V	Pressure difference, P_{21}	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Summary of Governing Differential Equations for Ideal Elements

Feng-Li Lian © 2020

CS-25-Electric - 9

Table 2.2-1 ([Dorf, Bishop 2017])

Type of	Physical
Element	Element
	Electrical inductance

Governing Energy
$$E$$
 or Equation Power $\mathscr P$ Symbol
$$v_{21} = L\frac{di}{dt} \qquad E = \frac{1}{2}Li^2 \qquad v_2 \circ \overset{L}{\longrightarrow} v_1$$

Power
$$\mathcal{P}$$

$$E = \frac{1}{2}Li^2$$

Energy E or

$$v_2 \circ \overbrace{\qquad}^L$$

Symbol

Fluid inertia

$$v_{21} = \frac{1}{k} \frac{dF}{dt} \qquad E = \frac{1}{2} \frac{F^2}{k} \qquad v_2 \circ \stackrel{k}{\longrightarrow} F$$

$$\omega_{21} = \frac{1}{k} \frac{dT}{dt} \qquad E = \frac{1}{2} \frac{T^2}{k} \qquad \omega_2 \circ \stackrel{k}{\longrightarrow} T$$

$$\frac{1}{2} \frac{T^2}{k}$$

$$\omega_{21} = \frac{1}{k} \frac{dT}{dt} \qquad E = \frac{1}{2} \frac{T^2}{k} \qquad \qquad \omega_2 \circ \bigwedge^k \circ \downarrow^{\omega_1} T$$

$$P_{21} = I \frac{dQ}{dt} \qquad E = \frac{1}{2} I Q^2 \qquad \qquad P_2 \circ \bigwedge^l \circ \downarrow^Q P_1$$

$$\stackrel{\omega_1}{\longrightarrow} T$$

Capacitive storage

$$-1$$
 dt

$$C \sim$$

$$v_1$$

nce
$$i = C \frac{dv_{21}}{dt}$$
 $E = \frac{1}{2}Cv_{21}^2$ $v_2 \circ \stackrel{i}{\longleftarrow} \mid \stackrel{C}{\longleftarrow} \circ v_1$

$$F = M \frac{dv_2}{dt} \qquad E = \frac{1}{2}Mv_2^2 \qquad F \stackrel{\circ}{\longleftarrow} \stackrel{\overline{M}}{\longleftarrow} \stackrel{\circ}{v_1} =$$

$$\begin{array}{c} c \\ constant \end{array}$$

Translational mass
$$F = M \frac{dv_2}{dt} \qquad E = \frac{1}{2} M v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} v_2 \stackrel{\bullet}{\smile} M \stackrel{\circ}{\smile} v_1 = \frac{1}{2} L v_2^2 \qquad F \stackrel{\bullet}{\smile} V_1 \stackrel{\bullet}{\smile} V_1 = \frac{1}{2} L v_1^2 \qquad F \stackrel{\bullet}{\smile} V_1 \stackrel{\bullet}{\smile} V_1$$

$$Mv_2^2$$
 ω_2^2

$$v_2$$
 M v_2 M v_3

Table 2.2-3 ([Dorf, Bishop 2017])

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathscr{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \longrightarrow \stackrel{R}{\longrightarrow} i \circ v_1$
	Electrical resistance Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \xrightarrow{v_2} b \circ v_1$
Energy dissipators	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}^{2}$	$T \xrightarrow{\omega_2} b \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ \!$