Spring 2020

控制系統 Control Systems

Unit 22 Mechanical Systems – Rotational Motion

Feng-Li Lian & Ming-Li Chiang NTU-EE Mar 2020 – Jul 2020

Example 2.3 (Rotational motion): Satellite Attitude Control Model

CS-22-Rotational - 2 Feng-Li Lian © 2020

Communication satellite

- The purpose is to control the attitude of the satellite, such as
 - ✓ Antennas point toward earth
 - ✓ Solar panels orient toward the sun

Source: Courtesy Thaicom PLC and Space Systems/Loral

- Model (Equations of Motion: Rotational motion) $M = I \alpha$
- $M(N \cdot m^2)$: the sum of all external moments about the center of mass,
- $I(Kg \cdot m^2)$: the body's mass moment of inertia about its center of mass,
- - α (*rad/sec*²): the angular acceleration of the body

Example 2.3 (Rotational motion): Satellite Attitude Control Model

CS-22-Rotational - 3 Feng-Li Lian © 2020

- Model (Equations of Motion)
 - Three axes, consider one axis at a time

$$F_c \cdot d + M_D = I \cdot \ddot{\theta}$$

- $F_c \cdot d$: Moments of control force
- M_D : Moments of small disturbance

Inertial reference

Transfer Function

• Let
$$F_c \cdot d + M_D = u$$

$$\frac{\Theta(s)}{U(s)} = \frac{1}{I} \cdot \frac{1}{s^2}$$

(Double-Integrator plant)

Example 2.3 (Rotational motion): Satellite Attitude Control Model

CS-22-Rotational - 4 Feng-Li Lian © 2020

Simulink

Example 2.4 Flexible Read/Write for a Disk Drive

- The moment of each body: free Disk read/write head body diagram Read head and Disk track sensor Head θ_1 inertia θ_2 I_2 θ_1 θ_2 0 $k(\theta_1 - \theta_2)$ Flexible shaft $k(\theta_1 - \theta_2)$ k, b T_c $b(\dot{\theta}_1 - \dot{\theta}_2)$ Motor $b(\dot{\theta}_1 - \dot{\theta}_2)$ inertia $M_c + M_D$ I_1 I_1 I_2 ovright @2015 Pearson Education, All Rights Re-
 - Model (Equations of Motion: Rotational motion)

$$I_1 \ddot{\theta}_1 + b(\dot{\theta}_1 - \dot{\theta}_2) + k(\theta_1 - \theta_2) = M_c + M_D$$
$$I_2 \ddot{\theta}_2 + b(\dot{\theta}_2 - \dot{\theta}_1) + k(\theta_2 - \theta_1) = 0$$

- M_c : Moments of applied control
- M_D : Moments of small disturbance

attached to one another

Example 2.5 Pendulum

Pendulum

Model (Equations of Motion)

$$T_c - mgl\sin\theta = I\ddot{\theta}$$

• The moments of inertia about the pivot point is $I = ml^2$

$$\frac{\ddot{\theta}}{l} + \frac{g}{l}\sin{\theta} = \frac{T_c}{ml^2}$$

- The model is nonlinear due to $\sin \theta$
- When the motion is small, i.e., θ small, $\sin \theta \approx \theta$

$$\ddot{\theta} + rac{g}{l} heta = rac{T_c}{ml^2}$$
 (Lineariz

(Linearization model)

Example 2.5 Pendulum

CS-22-Rotational - 8 Feng-Li Lian © 2020

$$\frac{\Theta(s)}{T_c(s)} = \frac{\frac{1}{ml^2}}{\frac{s^2 + \frac{g}{l}}{s}}$$

Matlab code

- t=0:0.02:10;

$$-s = tf('s')$$

- $-sys = (1/(m^{*}L^{2}))/(s^{2}+g/L);$
- Y=step(sys,t);
- Rad2Deg=57.3;
- Plot(t,Rad2Deg*y)

%converts output from radians to degrees

Example 2.6 Pendulum (Simulink for nonlinear motion)

CS-22-Rotational - 9 Feng-Li Lian © 2020

Matlab Simulink (m=1; L=1; g=9.81)

 $\ddot{\theta} + \frac{g}{l}\sin\theta = \frac{T_c}{ml^2}$

Example 2.6 Pendulum (Simulink for nonlinear motion)

CS-22-Rotational - 10 Feng-Li Lian © 2020

