105-1: EE4052

計算機程式設計

**Computer Programming** 



## Unit 12: 資料前處理

#### 連 豊 力

臺大電機系

Sep 2016 - Jan 2017



### 資料庫

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 某個產品的銷售情況:
  - 臺北地區的銷售記錄,存在一個星期的空白
  - 臺中地區的銷售記錄,某天的數據是負的
  - 某個時段,高雄地區的銷售量遠小於屏東地區的銷售量
- 這些資訊,明顯與實際的情況不符,
- 因此,為了獲得準確的分析報告,
- 必須對這些不符合常理的情況進行處理。
- 一般的商務或日常實作之中,所汲取的資料通常是:
  - 不完整 (缺少某部分)
  - 含有雜訊(錯誤或偏離期望)
  - 不一致(不同單位,不同編碼)
- 因此,通常需要進行所謂的前置處理, 剔除雜訊,恢復資料完整性或一致性, 才能進行下一步的分析



- 資料庫載入
- 資料遺漏值處理 刪除與插補
- 雜訊資料處理
- 資料轉換

3



#### 大綱

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

# 資料庫載入

## 軟體套件 與 資料庫

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- install.packages( "lattice" )
- install.packages( "MASS" )
- install.packages("nnet")
- library( lattice )
- library( MASS )
- library( nnet )
- install.packages( "mice" )
- library( mice )
- data( nhanes2 )

- #安裝 lattice 軟體套件
- #安裝 MASS 軟體套件
- #安裝 nnet 軟體套件
- # 載入 lattice 軟體套件
- # 載入 MASS 軟體套件
- # 載入 nnet 軟體套件
- #安裝 mice 軟體套件
- # 載入 mice 軟體套件
- #取得 nhanes2 資料集

- 5



## 軟體套件 與 資料庫

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- nrow(nhanes2)
- ncol(nhanes2)
- summary( nhanes2 )

- # nhanes2 資料集的橫列數
- # nhanes2 資料集的直行數
- # nhanes2 資料集的概括資訊

#### head( nhanes2 )

| > | head( | nhane | es2)      |     |
|---|-------|-------|-----------|-----|
|   | age   | bmi   | hyp       | chl |
| 1 | 20-39 | NA    | <na></na> | NA  |
| 2 | 40-59 | 22.7  | no        | 187 |
| 3 | 20-39 | NA    | no        | 187 |
| 4 | 60-99 | NA    | <na></na> | NA  |
| 5 | 20-39 | 20.4  | no        | 113 |
| 6 | 60-99 | NA    | <na></na> | 184 |

> summary( nhanes2 )

| age       | DMI              | nyp     | cni              |  |
|-----------|------------------|---------|------------------|--|
| 20-39: 12 | Mi n. : 20. 40   | no :13  | Mi n. : 113. 0   |  |
| 40-59: 7  | 1st Qu. : 22. 65 | yes: 4  | 1st Qu.: 185.0   |  |
| 60-99: 6  | Medi an : 26. 75 | NA's: 8 | Medi an : 187. 0 |  |
|           | Mean : 26. 56    |         | Mean : 191. 4    |  |
|           | 3rd Qu.: 28.93   |         | 3rd Qu.: 212. 0  |  |
|           | Max. : 35. 30    |         | Max. : 284. 0    |  |
|           | NA's :9          |         | NA's :10         |  |
|           |                  |         |                  |  |

- age: 年齡段,定性變數,3大類,沒有遺漏值
- hyp: 是否高血壓,定性變數,2大類,有8個遺漏值
- bmi: 身體品質指數 (kg/m^2),定量變數,有 9 個遺漏值
- chl: 血清膽固醇總量 (mg/dL),定量變數,有 10 個遺漏值

- 6



# 遺漏值處理 - 刪除與插補

7



## 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- is.na(nhanes2)
- sum( is.na( nhanes2 ) )
- sum(complete.cases(nhanes2)) # 完整樣本的數量
- md.pattern( nhanes2 )

- # 有遺漏值的數據列表
- # 有遺漏值的數據總數

  - #觀測遺漏值的情況

> md. pattern( nhanes2 )

|    | age | hyp | bmi | chl |    |
|----|-----|-----|-----|-----|----|
| 13 | 1   | 1   | 1   | 1   | 0  |
| 1  | 1   | 1   | 0   | 1   | 1  |
| 3  | 1   | 1   | 1   | 0   | 1  |
| 1  | 1   | 0   | 0   | 1   | 2  |
| 7  | 1   | 0   | 0   | 0   | 3  |
|    | 0   | 8   | 9   | 10  | 27 |



計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

#### ■ 處理缺失資料的方法:

- 直接刪除
- 用平均值或中位數取代

age hyp bmi chl 13 1 1 1 1 1 n 3 1 1 1 1 1 0 0 1 0 0 1 0 10 27

> md. pattern( nhanes2 )

- 多重補差法 (利用變數間關係進行預測取代值)
- imp <- mice( nhanes2, m = 4 )</li>
   # 產生四組完整的資料庫
- fit <- with (imp, lm(chl ~ age + hyp + bmi)) # 產生回歸模型</li>
- pooled <- pool( fit )</p>

# 對四組模型進行整理

summary(pooled)

#展示內容

#### > summary( pool ed )

| Secondaria | Sec



#### 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

#### 刪除法:

- 刪除觀測樣本
- 刪除整個變數
- 使用不同權數進行加權

#### 補差法:

- 平均值補差
- 回歸補差
- 二階補差
- 熱平台補差
- 冷平台補差
- 抽樣填補

- 10

#### 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 隨機抽樣補差法:
- nhanes2[, 4]

#針對第4組數據

- sub <- which( is.na( nhanes2[ , 4 ] ) == TRUE )</p>
- dataTR <- nhanes2[ -sub, ]</li>
- dataTE <- nhanes2[ sub, ]</p>
- dataTE
- dataTE[, 4] <- sample(dataTR[, 4], length(dataTE[, 4]), replace = T)</p>
- # 在非遺漏值之中,簡單抽樣之後的值,取代之
- dataTE

- 11



### 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 平均值補差法:
- nhanes2[, 4]

#針對第4組數據

- sub <- which( is.na( nhanes2[ , 4 ] ) == TRUE )</p>
- dataTR <- nhanes2[ -sub, ]</p>
- dataTE <- nhanes2[ sub, ]</li>
- dataTE
- dataTE[ , 4 ] <- mean ( dataTR[ , 4 ] )</li>
- #用非遺漏值之平均值取代之
- dataTE

#### 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 回歸模型預測值補差法:
- nhanes2[, 4]

#針對第4組數據

- sub <- which( is.na( nhanes2[ , 4 ] ) == TRUE )</p>
- dataTR <- nhanes2[ -sub, ]</li>
- dataTE <- nhanes2[ sub, ]</li>
- dataTE
- Imout <- Im( chl ~ age, data = dataTR )</p>
  - #利用 dataTR 中 age 為引數, chl 為因變數, 建構線性回歸模型
- dataTE[ , 4 ] <- round( predict( lmout, dataTE ) )</li>
  - #用回歸模型預測值取代之
- dataTE

- 13

## 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 熱平台補差法:在非遺漏值資料中,找到一個與遺漏值所在樣本相似的樣本
- accept <- nhanes2[ which( apply( is.na( nhanes2 ), 1, sum ) != 0 ), ]</p>
  - #存在遺漏值的樣本
- donate <- nhanes2[ which( apply( is.na( nhanes2 ), 1, sum ) == 0 ), ]</p>
  - #無遺漏值的樣本
- accept[ 1, ]
- donate[ 1, ]
- sa <- donate[ which( donate[ , 1 ] == accept[ 2, 1 ] & donate[ , 3 ] ==
  accept[ 2, 3 ] & accept[ 2, 4 ] ), ]</pre>
  - # 找尋與 accept 中第2個樣本相符的樣本



## 遺漏值處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 冷平台補差法:將資料分層,在層中對遺漏值使用平均值取代
- levelhyp <- nhanes2[ which( nhanes2[ , 3 ] == "yes" ), ]</pre>
  - # 按照 hyp 分層
- levelhyp
- levelhyp[ 4, 4 ] <- mean( levelhyp[ 1:3, 4 ] )</pre>
  - #用層內平均值代替第4個樣本的遺漏值

- 15



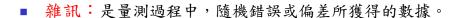
#### 大綱

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

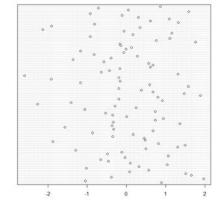
## 雜訊資料處理

#### 雜訊資料處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE



- 使用 outliers 軟體套套件中的 outlier 函數尋找雜訊資料
- 主要是利用:尋找資料中與其他觀測值及平均值差距最大的點,當作異常值
- install.packages( "outliers" )
- library(outliers)
- set.seed(1)
- s1 <- .Random.seed
- y <- rnorm( 100 )
- outlier( y )
- outlier( y, opposite = T )
- dotchart( y )



#找出最遠離群值

# 找出最遠離群值相反的值

## 雜訊資料處理

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 17

- 去除雜訊:是採用分群(分箱),回歸,檢查等方法,去平滑化一小群的數據, 以去除掉雜訊。
- 分群(分箱)法:
- set.seed(1); s1 <- .Random.seed
- x <- rnorm( 12 )
- $x \leftarrow sort(x)$
- dim(x) < -c(3, 4)
- X[1,] <- apply(x, 1, mean)[1] # 用第1橫列的平均值代替第1橫列中的資料
- x[2,] <- apply(x, 1, mean)[2]
- x[ 3, ] <- apply( x, 1, mean )[3]
- #用第2横列的平均值代替第2横列中的資料
- #用第3横列的平均值代替第3横列中的資料

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

# 資料轉換

19



#### 資料轉換

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

- 光滑:去掉資料中的雜訊,可以透過分箱、回歸、或分群等技術實現
- 屬性建構:由指定的屬性建構出新屬性,並增加到資料集中。 例如:透過『銷售額』和『成本』建構出『利潤』, 只需要對對應屬性資料進行簡單轉換。
- 聚集:對資料進行整理。例如:可以透過『日銷售額』資料,計算『月』和『年』的銷售資料。
- 規範化:把資料按照某種比例縮放,實質落入一個特定的小區間。
   例如:-1.0~1.0或0.0~1.0。
   常態分布之標準化是常見的方法。

## 資料轉換

計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

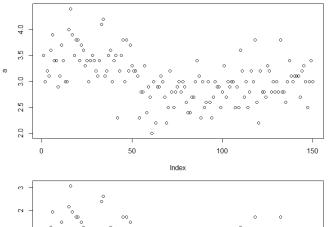
■ 規範化:把資料按照某種比例縮放,實質落入一個特定的小區間。

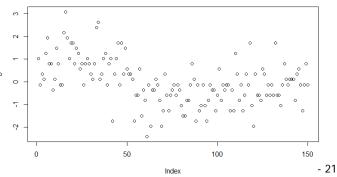
例如:-1.0~1.0或0.0~1.0。

常態分布之標準化是常見的方法。

- a <- iris[,2]</p>
- plot(a)
- b <- scale(a)</p>
- plot(b)
- #對該數據標準化

attr(, "scal ed: center")
[1] 3.057333
attr(, "scal ed: scal e")
[1] 0.4358663





## 資料轉

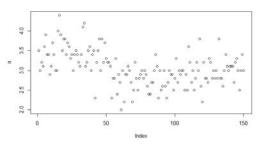
計算機程式設計 - 2016F Chap 12:資料前處理 Feng-Li Lian @ NTU-EE

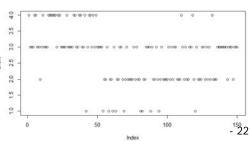
離散化:把數值屬性(例如:年齡)的原始值,用區間標籤(例如:0~10,11~20等),

或者是概念標籤(例如:youth, adult, senior)取代。

可以實現將定量資料向定性資料轉化,將連續類型資料離散化。

- a <- iris[,2]; plot( a )</pre>
- n <- length(a)</p>
- anew <- rep( 0, n )</p>
- which( a < 2.5 )</p>
- anew[ which( a < 2.5 ) ] <- 1</li>
- anew[ which(  $a \ge 2.5 \& a < 3.0$  ) ] <- 2
- anew[ which( a >= 3.0 & a < 3.5 ) ] <- 3
- anew[ which( a >= 3.5 ) ] <- 4</pre>
- plot( anew )







#### ■ 由額定資料產生概念分層:

屬性(例如:street)可以泛化到較高的概念層(例如:city, country 等)。 或者是概念標籤(例如:youth, adult, senior)取代。 可以實現將定量資料向定性資料轉化,將連續類型資料離散化。

- 資料泛化可以視為資料合併,
- 以城市為例,1 = 臺北,2 = 臺中,3 = 高雄,等等,
- 可以透過資料合併,
- 將 1, 2, 3 等合併為大城市, 6, 7, 8 等等合併為中城市。
- city <- c(6, 7, 2, 3, 1, 5, 4, 2, 8, 9, 2, 3, 8, 1, 2, 8, 8, 6)</p>
- citytype <- rep(0, 18)</li>
- citytype[ which( city <= 5 ) ] <- 1</pre>
- citytype[ which( city >= 6 ) ] <- 2</pre>